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Preface

The papers in this volume were presented at the 3rd International Conference
on Algorithmic Aspects in Information and Management (AAIM 2007), held
June 6–8, 2007 in Portland, Oregon, USA. This conference is intended for orig-
inal algorithmic research on immediate applications and/or fundamental prob-
lems pertinent to information management and management science, broadly
construed.

Submissions to the conference this year were conducted electronically. A
total of 120 papers were submitted, of which 40 were initially accepted, and
1 paper was withdrawed later. The papers were evaluated by an international
Program Committee consisting of Hee-Kap Ahn, Takao Asano, Amotz Bar-Noy,
Hans Bodlaender, Peter Brucker, Leizhen Cai, Gruia Calinescu, Jianer Chen,
Siu-Wing Cheng, Marek Chrobak, Yang Dai, Rudolf Fleischer, Jie Gao, Joachim
Gudmundsson, Bhaskar DasGupta, Gregory Gutin, Wen-Lian Hsu, Giuseppe F.
Italiano, Ming-Yang Kao, Sanjiv Kapoor, Tak-Wah Lam, Erran Li Li, Jing Li,
Xiang-Yang Li, Peter Bro Miltersen, Seffi Naor, Chung Keung Poon, Kirk Pruhs,
Rajeev Raman, Paul Spirakis, Zheng Sun, Wing Kin Sung, Jan van Leeuwen,
Jie Wang, Lusheng Wang, Weizhao Wang, Yu Wang, JinHui Xu, Yinfeng Xu,
and Binhai Zhu.

The submitted papers to AAIM 2007 were from Algeria, Canada, Chile,
China (mainland and Taiwan), Germany, Hong Kong, India, Italy, Japan, Mex-
ico, Netherlands, Portugal, South Korea, Spain, Sweden, Switzerland, Turkey,
Ukraine, UK, and USA.

Each paper was evaluated by at least two Program Committee members
and most papers were actually evaluated by at least three Program Committee
members, asisted in some cases by external reviews and comments. In addition to
these selected papers, the conference also includeed three invited keynote talks
by Anna Karlin from the University of Washington, Tuomas Sandholm from
CMU, and Shang-Hua Teng from Boston University.

We thank all the people who made this meeting possible: the authors for
submitting their papers to AAIM 2007, the Program Committee members and
external reviewers (listed on the pages that follow) for their excellent work,
and the three invited keynote speakers. Finally, we thank the Washington State
University, Vancouver campus, for their support and the local organizers and
our colleagues for their assitance.

June 2007 Ming-Yang Kao
Xiang-Yang Li
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Solving Generalized Maximum Dispersion with

Linear Programming

Gerold Jäger1, Anand Srivastav2, and Katja Wolf3

1 Department of Computer Science
Washington University

Campus Box 1045, One Brookings Drive
St. Louis, Missouri 63130-4899, USA

jaegerg@cse.wustl.edu
2 Institut für Informatik

Christian-Albrechts-Universität zu Kiel
Christian-Albrechts-Platz 4, D-24118 Kiel, Germany

asr@numerik.uni-kiel.de
3 Zentrum für Paralleles Rechnen Universität zu Köln

Weyertal 80, D-50931 Köln, Germany
wolf@zpr.uni-koeln.de

Abstract. The Generalized Maximum Dispersion problem asks for
a partition of a given graph into p vertex-disjoint sets, each of them hav-
ing at most k vertices. The goal is to maximize the total edge-weight
of the induced subgraphs. We present the first LP-based approximation
algorithm.

Keywords: Approximation Algorithms, Randomized Algorithms, Gen-
eralized Maximum Dispersion.

1 Introduction

Let G = (V, E) be an undirected graph (n = |V |, m = |E|) with non-negative
edge weights wij for (i, j) ∈ E (for convenience, we set wij = 0 for (i, j) /∈ E,
implicitly assuming that G is a complete graph). The weight ω(S) of a subgraph
of G induced by S ⊂ V is the sum

∑
i∈S,j∈S wij .

For non-negative integers p, k with pk ≤ n the Generalized Maximum Dis-
persion problem is to find p disjoint induced subgraphs of G, each with at most
k vertices, such that the sum of the edge weights of the subgraphs is maximum.

For a motivation of this problem consider the following problem: A large scale
manufacturer wants to expand in a new region and can use n locations. He
wants to expand in exactly p business areas (e.g. restaurants, groceries, home-
improvement markets etc.). For each such area he is allowed to use up to k
locations, where pk ≤ n. Furthermore assume, that all n locations are ready,
i.e. do not cause any extra costs. Shops of the same area are attractive for the
manufacturer, if they are as far as possible from each other (which means that for
one customer only one shop comes into question). Thus the manufacturer wishes

M.-Y. Kao and X.-Y. Li (Eds.): AAIM 2007, LNCS 4508, pp. 1–10, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 G. Jäger, A. Srivastav, and K. Wolf

to maximize the sum over all distances between locations of the same area, i.e.
he has to solve exactly our Generalized Maximum Dispersion problem.

Generalized Maximum Dispersion is NP-hard, which can be easily seen
by a reduction from the Maximum Clique problem. As Dense Subgraph is
a special case, it follows from [16] that there is even no PTAS for Generalized
Maximum Dispersion.

A promising and often successful approach to cope with the hardness of a
combinatorial optimization problem is to design polynomial-time approxima-
tion algorithms. Given an instance I of a maximization problem and an (ap-
proximation) algorithm A the approximation factor rA(I) is defined by rA(I) =
A(I)/OPT (I) ≤ 1.

Previous Work. To the best of our knowledge, the Generalized Maximum
Dispersion problem is only considered by Hassin, Rubinstein and Tamir [14].
They provide a polynomial-time algorithm with approximation factor 1

2−1/�k/2�
in graphs where the edge weights satisfy the triangle inequality.

As expressed in the name, the Generalized Maximum Dispersion is a
natural generalization of the Maximum Dispersion problem (which is also
denoted by MAX-k-DENSE-SUBGRAPH problem). For a given weighted graph
the Maximum Dispersion problem chooses one vertex set (i.e. p = 1) with
exactly k vertices, where the total edge-weight of the induced subgraph is to be
maximized. The Maximum Dispersion problem is also NP-hard and remains
NP-hard even when the weights satisfy the triangle inequality [18]. For further
results about this problem see [3,4,5,6,7,8,12,13,15,20].

A similar problem, called MAX-p-Section, is considered by Andersson [1]. He
provides an approximation algorithm based on semidefinite programming, which
is a natural generalization of the approximation algorithm for the special MAX-
Bisection problem given by Frieze and Jerrum [9]. Many of the techniques used
in this paper – as relaxation and randomized rounding – base on the pioneer
paper of Goemans and Williamson [11] who applied semidefinite programming
on MAX-CUT.

The Results. We present a randomized rounding algorithm for the Gener-
alized Maximum Dispersion problem which achieves for every 0 < δ ≤ 1/2
and 0 < ε < 1 with probability at least εk

12n a solution with value at least
(1−δ)2(1−ε)k

2n−pk W , provided that k ≥ 3(1−δ)
δ2 ln(36np

εk ), where W is the value of an
optimal solution. We also show how this algorithm can be derandomized. By it-
erating the randomized algorithm we obtain the same approximation guarantee
even under the weaker condition k ≥ 3(1−δ)

δ2 ln(4p). A key point in our algorithm
is that it can be viewed as a combination of direct randomized rounding and
random sampling in the following sense: Instead of rounding the fractional solu-
tion directly by taking the fractional solution as rounding probabilities, we take
a convex sum of the fractional solution and a certain probability for uniformly
distributing the vertices among the subgraphs.
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The paper is organized as follows. In Section 2 we introduce a linear relax-
ation for the Generalized Maximum Dispersion problem. Depending on this
relaxation, we analyze a randomized algorithm in Section 3 and a deterministic
algorithm in Section 4.

2 A Linear Relaxation for Generalized Maximum
Dispersion

In Generalized Maximum Dispersion the task is to construct disjoint subsets
S1, . . . , Sp ⊂ V maximizing the total weight of the subgraphs induced by the
sets S�, � = 1, . . . , p. Let W denote the value of an optimal solution for the given
instance. An integer program is given below. For each vertex i ∈ V we introduce
a p-variate vector xi1, . . . , xip, where xi� = 1 is interpreted as i ∈ S�. The
constraints (2) enforce that each vertex belongs to at most one of the subgraphs,
(3) mirrors the cardinality constraints. zij� = 1 and (1) imply that both, i and
j, are part of the same subset S�, and the weight of the corresponding edge
contributes to the objective function.

maximize
∑

(i,j)∈E

wij

p∑

�=1
zij�

subject to 0 ≤ zij� ≤ xi�, 0 ≤ zij� ≤ xj� for (i, j) ∈ E, � = 1, . . . , p (1)
p∑

�=1
xi� ≤ 1 for i = 1, · · · , n (2)

n∑

i=1
xi� ≤ k for � = 1, . . . , p (3)

xi�, zij� ∈ {0, 1} for i, j = 1, · · · , n, � = 1, · · · , p (4)

When we relax the integrality constraints (4), an optimal fractional solution
x∗

i�, z
∗
ij� ∈ [0, 1] can be computed in polynomial time using standard linear pro-

gramming techniques. We now round the fractional solution to an integer. Our
rounding scheme is a mixture of direct LP-based randomized rounding (with the
fractional solution x∗

i�) and distributing the vertices among the sets uniformly
at random with probability k/n. We define the following probabilities

pi� := cx∗
i� + (1 − c)k/n for i = 1, . . . , n, � = 1, . . . , p.

pi :=
p∑

�=1

pi� for i = 1, . . . , n.

c ∈ [0, 1] is a constant, depending on k and n, which we will specify later so
as to obtain a good approximation factor.

For � = 1, . . . , p let e� ∈ N
p be the 0/1-vector whose �-th component is 1 and

the other entries are 0, and let ep+1 ∈ N
p be the zero vector.
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Let 0 < δ ≤ 1/2 and let Xi, 1 ≤ i ≤ n, be n mutually independent random
variables with values in {e� | � = 1, . . . , p + 1} with

Pr[Xi = e�] =
{

(1 − δ)pi� for � = 1, . . . , p
1 − (1 − δ)pi for � = p + 1

We can think of the Xi ’s as n mutually independent (p + 1)-faced dice.

Algorithm Randdisp

1. For � = 1, . . . , p define

xi� =
{

1 if Xi = e�

0 else

If Xi = ep+1, then xi� = 0 for � = 1, . . . , p.
2. For i, j ∈ {1, . . . , n} and � ∈ {1, . . . , p} define

zij� = xi�xj�

Randdisp generates a random 0/1 assignment for the xi� ’s and the zij� ’s. We
show that this is a feasible solution for Generalized Maximum Dispersion
with non-zero probability.

3 A Randomized Algorithm for Generalized Maximum
Dispersion

Let ω :=
∑

(i,j)∈E wij

∑p
�=1 zij� be the weight resulting from the above assign-

ment.

Theorem 1. Let 0 < δ ≤ 1/2, 0 < ε < 1 and cδ = 3(1−δ)
δ2 . If k ≥ cδ ln(36np

εk ),
then with probability at least εk

12n the zij�, xi�, i, j ∈ {1, . . . , n}, � ∈ {1, . . . , p}
build a feasible solution for Generalized Maximum Dispersion and

ω ≥ (1 − δ)2(1 − ε)
k

2n − pk
W.

Proof Let A0, A1, . . . , Ap be the following events. A0 is the event

ω < (1 − δ)2(1 − ε) k
2n−pk W . For � = 1, . . . , p, A� is the event

∑n
i=1 xi� > k.

We will derive upper bounds for Pr[A�], � = 0, . . . , p.
Let a(n) = 1/(1 + εk

8n ) and let b(n) = 1 − a(n).

Claim 1: Pr[A0] ≤ a(n)
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Proof of Claim 1:

IE[ω] = (1 − δ)2
∑

(i,j)∈E

wij

p∑

�=1

pi�pj�

= (1 − δ)2
∑

(i,j)∈E

wij

p∑

�=1

[
cx∗

i� + (1 − c)k/n
][

cx∗
j� + (1 − c)k/n

]

= (1 − δ)2
∑

(i,j)∈E

wij

p∑

�=1

[
c2x∗

i�x
∗
j� + c(1 − c)(x∗

i� + x∗
j�)k/n + (1 − c)2k2/n2

]

≥ (1 − δ)2

⎡

⎣c(1 − c)
( ∑

(i,j)∈E

wij

p∑

�=1

2z∗ij�

)
k/n + ω(V ) p(1 − c)2k2/n2

⎤

⎦

≥ (1 − δ)2
[
2c(1 − c)k/n + p(1 − c)2k2/n2

]
W

Now choose c so that the factor 2c(1 − c)k/n + p(1 − c)2k2/n2 is maximum.
It is easy to show that this is the case for c = 1 − n/(2n − pk). Thus

IE[ω] ≥ (1 − δ)2
(

2 ·
(

1 − n

2n − pk

)

· n

2n − pk
· k

n
+ p ·

(
n

2n − pk

)2

· k2

n2

)

W

= (1 − δ)2
(

2 ·
(

1 − n

2n − pk

)

· k

2n − pk
+

pk2

(2n − pk)2

)

W

= (1 − δ)2
(

2kn − pk2

(2n − pk)2

)

W

= (1 − δ)2
k

2n − pk
W

We have

Pr[A0] = Pr
[

W − ω > W − (1 − δ)2(1 − ε)
k

2n − pk
W

]

≤ Pr
[
W − ω > W − (1 − ε)IE[ω]

]

≤ W − IE[ω]
W − (1 − ε)IE[ω]

(Markov inequality) (5)

≤ a(n) (6)

Claim 1 is proved, if we have shown:

W − IE[ω]
W − (1 − ε)IE[ω]

≤ a(n) (7)

As (7) is equivalent to

W − W · a(n) ≤ (1 − (1 − ε) · a(n)) · IE[ω]

it is sufficient to show (7) for IE[ω] = (1 − δ)2 k
2n−pk W .
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In this case (7) is equivalent to
(

1 − (1 − δ)2 · k

2n − pk

)

·
(

1 +
εk

8n

)

≤ 1 − (1 − ε) · (1 − δ)2 · k

2n − pk

and to

εk

8n
≤ (1 − δ)2 · k

2n − pk
·
(

1 +
εk

8n
− 1 + ε

)

(8)

Because of δ ≤ 1/2, (8) follows from

2n − pk ≤ 1
4

· (k + 8n)

which is true for p ≥ − 1
4 .

Claim 2: Pr[A�] ≤ b(n)
4p for � = 1, . . . , p

Proof of Claim 2:

IE

[
n∑

i=1

xi�

]

= (1 − δ)
n∑

i=1

pi�

= (1 − δ)

[

c

n∑

i=1

x∗
i� + (1 − c)k

]

≤ (1 − δ) [ck + (1 − c)k]
= (1 − δ)k.

With the Angluin-Valiant inequality (see [2])

Pr[A�] = Pr

[
n∑

i=1

xi� > k

]

= Pr

[
n∑

i=1

xi� > (1 − δ) · k ·
(

1 +
δ

1 − δ

)]

≤ e
− δ2

(1−δ)2·2(1+ δ
3(1−δ) )

· (1 − δ)k
Angluin-Valiant inequality

≤ e
− δ2k

3(1−δ) using δ
1−δ ≤ 3

2

≤ εk

36np
using k ≥ cδ ln

(
36np

εk

)

≤ b(n)
4p

The correctness of the last inequality follows from the equivalence to

εk

(

1 +
εk

8n

)

≤ 9n

(

1 +
εk

8n

)

− 9n
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which is equivalent to

72n2 ≤ (8n + εk) (9n − εk)

and to n ≥ εk which is true. So Claim 2 is proved.
Hence

Pr[A0 ∨ A1 ∨ · · · ∨ Ap] ≤
p∑

�=0

Pr[A�] ≤ a(n) + b(n)/4

≤ 3
4

a(n) +
1
4

≤ 1 − εk

12n
(9)

The correctness of the last inequality follows from the equivalence to

9n ≤ 9n ·
(

1 +
εk

8n

)

− εk ·
(

1 +
εk

8n

)

and to n ≥ εk.
Therefore the theorem is proved. �

There are two interesting cases depending on the magnitude of k.

Case 1: k = o(n). Due to (6) the probability that the objective function is
smaller than (1 − δ)2(1 − ε) k

2n−pk W is not larger than a(n). If k = o(n), a(n)
tends to 1 as n tends to infinity. In this case the success probability of Randdisp
tends to zero. But if we iterate Randdisp L times and take the best result,
then the probability of the event A0 is only a(n)L. Let us call the iterated
algorithm Randdisp(L). With f = εk

8n , the inequality a(n)L ≤ 1/4 is equivalent
to L ≥ (ln(1 + f))−1 ln 4. Since f ≤ 1/8 because of εk ≤ n, Taylor expansion of
ln(1 + f)

ln(1 + f) = f − f2

2
+

f3

3
− f4

4
+ · · ·

with f − f2

2 ≥ 15
16f shows that ln(1 + f) ≥ 15f/16, thus for L ≥ 16 ln 4

15f we get
a(n)L ≤ 1/4. Now we can argue as in the proof of Theorem 1 and obtain under
the weaker condition k ≥ cδ ln(4p) the desired approximation:

Theorem 2. Let 0 < δ ≤ 1/2, 0 < ε < 1, cδ = 3(1−δ)
δ2 and let L = � 12n

εk �.
If k ≥ cδ ln(4p), then with probability at least 1/2, Randdisp(L) generates a
solution zij�, xi�, i, j ∈ {1, . . . , n}, � ∈ {1, . . . , p} for Generalized Maximum
Dispersion such that

ω ≥ (1 − δ)2(1 − ε)
k

2n − pk
W

Case 2: k = Ω(n). In this case a(n) is a constant smaller than one, and as
above the result can be proved under the weaker condition k ≥ cδ ln(4p). But
since k = Ω(n), for every fixed δ this condition is automatically satisfied.
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Note that using a non-linear rounding function, Goemans [10] has achieved the
better approximation guarantee of k/n for the situation where a single subgraph
is to be determined. However, his analysis does not appear to generalize to p ≥ 2.

For the complete graph G = Kn, k = n/p and unit edge weights an optimum
partition has weight n2/2p − n/2. On the other hand xi� = xj� = zij� = 1/p,
for all i, j, �, is a feasible solution of the fractional linear program with objective
function value (n2 − n)/2. So the integrality gap between the integer optimum
and the fractional optimum is 1

p (1 − o(1)). For our approximation factor holds

(1 − δ)2(1 − ε)
k

2n − pk
≤ k

2n − pk
≤ k

n
≤ 1

p

where for δ = 0, ε = 0, and k = n/p the equality holds. Thus the approximation
factor cannot be improved essentially using the relaxation from this paper.

Of course, Hassin, Rubinstein and Tamir’s [14] approximation factor – for the
special case that the triangle equality is satisfied – is better in general than our
approximation factor because of 1

p ≤ 1
2−1/�k/2� for p ≥ 2.

4 A Deterministic Algorithm for Generalized Maximum
Dispersion

Randdisp can be derandomized using the method of conditional probabilities
and pessimistic estimators (see [17,19] for details):

Theorem 3. Let T be the time to compute a fractional, optimal solution for
Generalized Maximum Dispersion. Let 0 < δ ≤ 1/2, 0 < ε < 1 and cδ =
3(1−δ)

δ2 . If k ≥ cδ ln(36np
εk ), then a feasible solution for Generalized Maximum

Dispersion which satisfies

ω ≥ (1 − δ)2(1 − ε)
k

2n − pk
W

can be found in O(T + pn2 log(pn
εk )) time.

Proof

The proof relies on a slight modification of the algorithmic Angluin-Valiant in-
equality for multivalued random variables (Theorem 2.13 in [19]). There the
probabilities of all events under consideration are estimated by the Angluin-
Valiant inequality, whereas here the probability of the event A0 is bounded by
Markov’s inequality and the probabilities of all other events A�, � = 1, . . . , p,
have been estimated by the Angluin-Valiant inequality. We must ensure that
Theorem 2.13 in [19] is valid in this case as well. We follow the notation in the
proof of Theorem 1. In the proof of Theorem 2.13 in [19] upper bounds for the
conditional probabilities

Pr[A� | X1, . . . , Xi]
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must be computed efficiently, for all i = 1, . . . , n and � = 0, . . . , p. For the events
A�, � = 1, . . . , p this can be done as in the proof of Theorem 2.13 in [19]. For A0
the Markov inequality helps. By (5) we have

Pr[A0 | X1, . . . , Xi] ≤ W − IE[ω | X1, . . . , Xi]
W − (1 − ε)IE[ω | X1, . . . , Xi]

The conditional expectations IE[ω | X1, . . . , Xi] can easily be computed in O(pn)-
time evaluating the quadratic function ω at the values determined by the X1, . . . ,
Xi and then taking the expectation. With this observation the proof of Theorem
2.13 in [19] can be lifted to cover all events A0, A1, . . . , Ap. We invoke Theorem
2.13 in [19], with n random variables X1, . . . , Xn with values in the set

{y ∈ {0, 1}p |
p∑

�=1

y� ∈ {0, 1}}

and p + 1 events defined as follows. For � = 0, . . . , p we define

ψ� =

⎧
⎪⎪⎨

⎪⎪⎩

n∑

i=1
xi� for � = 1, . . . , p

∑

(i,j)∈E

wij

p∑

r=1
xirxjr if � = 0.

The corresponding events in Theorem 2.13 in [19], defined via the functions ψ�

are the events A�, � = 0, . . . , p. The upper bounds f(�) for Pr[A�] are according
to the proof of Theorem 1: a(n) if � = 0 and b(n)

4p for � = 1, . . . , p. Using (9),
condition (27) preceding Theorem 2.13 in [19] reads as

p∑

�=0

f(�) ≤ 1 − γ,

with γ = εk
12n . By Theorem 2.13 in [19] we can construct a vector (X1, . . . , Xn)

with Xi ∈ {0, 1}p and
p∑

�=1
xi� ∈ {0, 1} for all i = 1, . . . , n such that (X1, . . . , Xn)

simultaneously satisfies all events A0, . . . , Ap, as required. The time needed for
the construction of (X1, . . . , Xn) is according to Theorem 2.13 in [19]

O

(

(p + 1)n2 log
(

(p + 1)n
γ

))

= O
(
pn2 log

(pn

εk

))
.

Together with the computation time T for the fractional solution we are
done. �
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Abstract. Modularity, the recently defined quality measure for cluster-
ings, has attained instant popularity in the fields of social and natural
sciences. We revisit the rationale behind the definition of modularity and
explore the founding paradigm. This paradigm is based on the trade-off
between the achieved quality and the expected quality of a clustering
with respect to networks with similar intrinsic structure. We experi-
mentally evaluate realizations of this paradigm systematically, includ-
ing modularity, and describe efficient algorithms for their optimization.
We confirm the feasibility of the resulting generality by a first system-
atic analysis of the behavior of these realizations on both artificial and
on real-world data, arriving at remarkably good results of community
detection.

1 Introduction

Discovering natural groups and large scale inhomogeneities is a crucial task in
the exploration and analysis of large and complex networks. This task is usually
realized with clustering methods. The majority of algorithms for graph clus-
tering are based on the paradigm of intra-cluster density versus inter-cluster
sparsity. Several formalizations have been proposed and evaluated, an overview
of such techniques is given in [1]. Recently, Girvan and Newman [2] proposed
the objective function modularity, which indirectly incorporates this paradigm.
Modularity evaluates a clustering based on the fraction of intra-cluster edges
compared to the expected value of this number. Modularity was first intro-
duced as a quality measure of a clustering, however, a simple greedy algorithm,
solely based on modularity, has been proposed shortly after by Newman [3]. The
definition of modularity and this algorithm evoked a surge of interest, yield-
ing many studies concerning different applications, such as protein interaction
dependencies, recommendation systems or social network analysis, and possi-
ble adjustments (see e.g. [4,5,6,7]). Moreover, a range of alternative algorithmic
approaches has been proposed, based on a greedy agglomeration [8,9], on spec-
tral division [10,11], simulated annealing [12,13] and extremal optimization [14].
Recently, it has been proven, that it is NP-hard to optimize modularity [15],
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which justifies the need for heuristics and approximations. Note that little is
known on the approximability of modularity.

However, to our knowledge, no systematic evaluation of modularity-based
clustering has been performed, yet. In this work, we conduct such an evalu-
ation and, additionally, we advance towards a profound understanding of the
rationales modularity is based upon. We formally state and investigate the gen-
eralized founding paradigm for the significance of a clustering as the trade-off
between the achieved quality and the expected quality for random networks
incorporating the intrinsic properties of the original network. We experimen-
tally evaluate realizations of this paradigm (including modularity itself) and
extensively evaluate algorithms that each optimize a realization, followed by a
partial discussion of their behavior. Furthermore, we present an algorithm that
efficiently optimizes the particularly promising realization relative performance
significance in O(n2 log n) time. We compare the performance of these algo-
rithms in terms of clustering quality to that of other clustering algorithms, on
a set of random pre-clustered graphs and complement our findings with results
on real data. Our results indicate the feasibility of the paradigm in that, on the
whole, our algorithms surpass the benchmark algorithms, and in that the gen-
erality of the approach is justified by specific realizations excelling on real-world
data.

This paper is organized as follows: After introducing the necessary preliminar-
ies for graph clustering and some quality measures (Sec. 2), we give the formal
definition of our significance paradigm and present some realizations (Sec. 3).
Section 4 scrutinizes the greedy algorithms which are employed to obtain clus-
terings with high significance score, including an efficient implementation for a
quick divisive merge. The setup and the results of the experimental evaluation
are described in Section 5 which are followed by a conclusion.

2 Preliminaries

Throughout this paper, we will use the notation of [1]. More precisely, we as-
sume that G = (V, E, ω) is an undirected, weighted, and simple graph and
ω : E → [0, 1]. For a node v, we define the node weight ω(v) as the sum of
the weight of its incident edges. Let |V | =: n, |E| =: m and C = {C1, . . . , Ck}
a partition of V . We call C a clustering of G and the Ci clusters; C is called
trivial if either k = 1, or all clusters Ci contain only one element. In the fol-
lowing, we often identify a cluster Ci with the induced subgraph of G, i. e., the
graph G[Ci] := (Ci, E(Ci), ω|E(Ci)), where E(Ci) := {{v, w} ∈ E : v, w ∈ Ci}.
Then E(C) :=

⋃k
i=1 E(Ci) is the set of intra-cluster edges and E \E(C) the set of

inter-cluster edges. The set E(Ci, Cj) denotes the set of edges connecting nodes
in Ci to nodes in Cj . The number of intra-cluster edges is denoted by m(C)
and the number of inter-cluster edges by m(C). We denote the number of non-
adjacent pairs of nodes that are in the same cluster as m(C)c, and the number of



Significance-Driven Graph Clustering 13

non-connected pairs of nodes that are not in the same cluster as m(C)c. Modu-
larity is defined ([9]) as:

mod (C) :=
m(C)

m
− 1

4m2

∑

C∈C

(
∑

v∈C

deg(v)

)2

(1)

We measured the quality of clusterings with a range of of quality indices,
discussed e.g., in [1], however, we set our focus on the indices coverage ([1])
and performance ([16]) in this work, since they are the most well studied ones.
In brief, coverage is the fraction of intra-cluster edges and performance is the
fraction of correctly classified node pairs. For a discussion of these indices we
refer the reader to the given references, and simply state their formal definitions
in Equations (2) and (3):

cov(C) :=
m(C)

m
=

m(C)
m(C) + m(C)

(2) perf(C) :=
m(C) + m(C)c

1
2n(n − 1)

(3)

The fact that modularity can be expressed as coverage minus the expected
value of coverage (see Sec. 3.1 and [9]) motivates the general paradigm we state
in the next section. These definitions generalize in a natural way as to take edge
weights into account. Thus, ω(C) (ω(C)) denotes the sum of the weights of all
intra-cluster (inter-cluster) edges and W denotes the sum of all edge weights. In
the terms ω(C)c and ω(C)c the weight between a non-adjacent pair of nodes is
set to the maximum edge weight in E and the weight between adjacent nodes is
the difference of the maximum edge weight and the weight of the edge between
them.

3 The Significance Paradigm

In the significance paradigm a good clustering is characterized by having a high
quality compared to the value obtained for a random network that reflects spe-
cific structural properties that are expected to be present in the graph, as pre-
defined in an appropriate null hypothesis. The structural properties of a graph
can include characteristics such as the sequence of degrees, the number of nodes,
the clustering coefficient, the degree distribution etc. These properties need not
determine a graph completely but define a family of graphs incorporating them.
A configuration is a specific realization of these properties, i.e., a specific graph.
Every realization of the significance paradigm requires a quality measure, a null
hypothesis, and a mode of comparison of both. Since measuring the quality of a
clustering is a well-studied field, we present a way to extend a given quality index
M to our paradigm. As, in this context, modularity (1) extends coverage (2),
the concept of significance is a true generalization of modularity.

Definition 1. Given a quality index M and a clustering C, we define the sig-
nificance S�

M of a clustering C as the corresponding quality index respecting our
paradigm in the following way:
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S�
M(C) := M(C) � EΩ[M(C)] , (4)

where EΩ [M] is the expected value of the quality index M for the clustering C
with respect to a suitable probability space Ω and � is a binary operator on real
numbers.

The following example illustrates the intention of this definition. Although,
many quality measures M are normalized to the interval [0, 1], it is often hard
to associate a specific value with a meaningful interpretation as showcased in
Figures 1 and 2. This can be an intrinsic pattern of the measure and not merely

Fig. 1. A random split of a G(n, p)
with n = 20 and p = 0.5, where coverage
yields a value of 0.66

Fig. 2. A meaningful clustering of an in-
terconnected, six-sided tube, yielding a
coverage of 0.43

an artifact of the normalization. However, the comparison of the achieved quality
with the expected quality (with respect to a suitable model) intuitively yields a
‘relative’ variant of the measure. Thus, it potentially allows for a better inter-
pretation of the scale (modularity value for Fig. 1: 0.128, for Fig. 2: 0.316).

3.1 Probability Space

In the following we briefly discuss a suitable probability space Ω required for
Definition 1, which we use throughout this paper. The importance of the struc-
tural properties of a graph may differ depending on the application, we restrict
ourselves to a basic setup, where the degrees of the nodes are considered to be
a defining property. Thus Ω consists of the family of all graphs having the same
sequence of degrees as the input graph, with uniform probability.

However, even for simple quality indices, such as coverage, we are not aware of
a closed formulation for the expectation. Instead of designing random processes
to obtain expectation values, we consider a heuristic that was already used in [9].
The heuristic assigns to each edge e = {v, w} a probability of deg(v) deg(w)/2m
in the unweighted case, and an expected weight of ω(v)ω(w)/2W in the weighted
case. While this heuristic does not rigorously respect the expected sum of all
node weights, the error term tends to zero for graphs with a sublinear maxi-
mum degree, see Appendix A. A degenerate example that clearly illustrates this
discrepancy is the unweighted, complete graph Kn. For this graph, the original
probability space contains only one element, thus yielding M(C) = EΩ [M(C)],
which is not true for the heuristic.
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The concept of significance is related to the notion of p-values in statistical
hypothesis testing. The p-value of a value t observed for a random variable
T is the probability that under the assumption of a given null hypothesis, T
assumes a value at least as unfavorable to the null hypothesis as the observed
value t. In general, the null hypothesis is rejected, if the p-value is smaller than
the statistical significance level (see e.g. [17]). However, in our concept we do
not reject a null hypothesis, which we assume to reasonably describe observed
graphs. Instead, we compare the achieved quality of a clustering to the expected
value, in order to judge its relevance.

3.2 Implementations of the Significance Paradigm

The heuristic presented above enables us to study four implementations of the
significance paradigm, namely, coverage and performance as quality indices and
subtraction and division as the binary operators. Using coverage and subtraction,
modularity is one of the implementations. Table 3.2 summarizes the formulas of
the resulting four implementations of the significance paradigm. For a discussion
of performance in weighted graphs see [1], the proof for E[performance] can be
found in the Appendix A.

Table 1. Quality indices and their expected values (ωmax: maximum edge weight)

measure coverage performance

M m(C)
m

m(C)+m(C)c

0.5·n(n−1)

E[M]
�

C∈C

��
v∈C deg(v)

2m

�2 �
C∈C((

�
v∈C deg(v))2/m−(

�
v∈C 1)2)+n2−2m

n(n−1)

Mweighted
ω(C)
W

ω(C)+ωmaxm(C)c+(ωmaxm(C)−ω(C))
0.5·n(n−1)·ωmax

E[Mweighted]
�

C∈C

��
v∈C ω(v)

2W

�2 �
C∈C(

�
v∈C ω(v))2/W+ωmax(n2−

�
C∈C |C|2)−2W

n(n−1)ωmax

Note that the weighted versions of modularity are true generalizations of the
unweighted case, since setting each weight to 1 yields the unweighted formulas.
Thus, we restrict our analyses on the weighted case. The weighted variant of
modularity has also been defined by Newman in [18]. Based on Table 3.2 we
now define the following implementations, with a nomenclature borrowed from
approximation theroy:

S−
cov := coverage − E[coverage] (equals modularity) S÷

cov :=
coverage

E[coverage]

S−
perf := performance − E[performance]

︸ ︷︷ ︸
absolute variants (subtractive)

S÷
perf :=

performance
E[performance]

︸ ︷︷ ︸
relative variants (divisive)
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As we shall see in the evaluation in Section 5, these implementations differ
significantly in their behavior, although they are all derived from the same
paradigm.

4 Significance-Clustering Algorithms

In this section, we describe the algorithms that are used to obtain clusterings
with high values of significance. As suggested by Newman in [3] we employ a
straightforward greedy heuristic. This allows for a fair evaluation for all the
variants of significance introduced in Section 3.2. The usage of a heuristic or
an approximation is strongly encouraged by the fact that an NP-completeness
proof of this optimization problem has recently been presented in [15].

4.1 The Greedy Algorithm

For a given significance measure S the greedy algorithm starts with the singleton
clustering and iteratively merges those two clusters that yield largest increase
or the smallest decrease in significance. After n − 1 merges the clustering that
achieved the highest significance is returned. The algorithm maintains a sym-
metric matrix ΔS with entries ΔSi,j equaling S(Ci,j) − S(C), where C is the
current clustering and Ci,j is obtained from C by merging clusters Ci and Cj .
The pseudo-code for the greedy algorithm is given in Algorithm 1.

Algorithm 1. Greedy Significance

Input: Graph G = (V, E,ω)
Output: Clustering C of G
C ← Singletons1

Initialize matrix ΔS (as described above)2

Initialize S3

while |C| > 1 and ∃i, j : ΔSi,j > 0 do4

Find {i, j} with ΔSi,j is the maximum entry in the matrix ΔS5

Merge clusters i and j6

Update ΔS7

S ← S + ΔSi,j8

Return clustering with highest significance9

4.2 Runtime Analysis

Due to the special structure of the significance measures introduced in Sec-
tion 3.2, a precise analysis can be given. We define the matrices ΔM and ΔE[M]
analogously to ΔS. First, note that coverage and performance can be updated
locally. More precisely, let C be a clustering, then cov(Ci,j) can be computed
using cov(C), E(Ci), E(Cj) and E(Ci, Cj). The same holds for performance and
for both values of expectation. Thus, we obtain for the absolute variants the up-
date formula: ΔSk,(ij) = ΔMi,k + ΔMj,k − ΔE[Mk,i] − ΔE[Mk,j ], where C(ij)
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corresponds to the merged cluster of Ci and Cj ; see [19] for details. Due to this
locality, only two rows and columns are affected, namely the ith and the jth,
requiring O(n log n) update time, using heaps to store the rows. The heaps help
to quickly find the maximum entry in ΔS, i.e. the best improvement. However,
for the relative variants, the whole matrix has to be updated, yielding at least a
quadratic runtime for a standard implementation. In Section 4.3, we present a
faster method using kinetic heaps and geometry.

Employing a simple data structure for clusterings e.g. representing clusters
by linked lists and storing a collection of pointers to their head, one observes
that Step 1, Step 3 and Step 9 run in O(n) time. The matrix ΔS is initialized in
O(n2) time. The loop at Step 4 is executed n−1 times. Step 5 runs in O(n) time,
since the rows of ΔS are stored as heaps. The merge of two clusters (step 6) and
the update of S (step 8) require at most linear time. Thus, the total runtime is
dominated by the the time required for updating ΔS, which yields the following
lemma:

Lemma 1. Algorithm 1 runs in O(n2 log n) time for the absolute variants.

For the relative variants, an analog to Lemma 1 yields a runtime of O(n3), how-
ever, in Lemma 2 we improve this upper bound for relative variants employing
Algorithm 2. It is not hard to see that the first local optimum of S, that the
absolute greedy heuristic attains, is its global optimum, since then the matrix
ΔS is non-positive, allowing no further increase in S with any future merge.
This is due to the linear update of ΔS that consists of simply adding up specific
entries, thus keeping the matrix non-positive after future merges. This can result
in a substantial decrease in running time if the graph is known to have a fine
clustering structure, i.e., if |C| ∈ ω(1) (if the number of clusters is dependent
on n). The loop at Step 4 can then be terminated after o(n) merges. A similar
observation holds for the relative variants, as described in the next section.

4.3 Quick Divisive Merge

Considering the relative variants, after a merge, both M and E[M] change, and
thus all values of ΔSk,l have to be recomputed after each merge, even though
ΔMk,l and ΔE[M]k,l might not change. The update of ΔS thus requires O(n2)
time. In Algorithm 2 we show how this update can be performed in O(n log n)
time using a geometric embedding of ΔS. The algorithm uses the fact that if
we assign to each entry {i, j} of ΔS a point pij = (M(Ci,j), E[M(Ci,j)]) =
(M + ΔMij , E[M] + ΔE[M]ij), the best merge corresponds to the point pmax
that maximizes y(p)/x(p). Since we only regard increases, and ΔE[M]ij ≥ 0,
we only need to consider the points in quadrant one. The point pmax can be
found by a tangent query through 0. Thus pmax lies on the convex hull of this
set of points, unless we encounter the degenerate case, where x(p) = 0, which
can easily be detected and handled. After a merge, the points that correspond
to rows or columns k or l, are updated as sketched out in Section 4.2. Then, all
points are implicitly shifted with respect to the new values of M and E[M] in
line 3, which means that R is initialized as 0 before the first merge.
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In terms of running time, the crucial steps in Algorithm 2 are lines 1 and 2.
Brodal and Jacob [20] introduce kinetic heaps using space only linear in the
number of points stored, that support the tangent queries in line 1 in O(log n)
time and insertions and deletions in O(log n) amortized time per operation.
This yields a total running time of O(n log n) per merge of clusters, since only
points assigned to entries of ΔS that correspond to clusters k or l have to be
recomputed. The update of the values M and E[M] is realized by simply shifting
the origin accordingly, saving Ω(n2) updates of points. Thus, we arrive at the
following:

Lemma 2. By employing quick divisive merge (Algorithm 2), Algorithm 1 runs
in O(n2 log n) time for the relative variants.

Similar to the absolute variants, the relative heuristic finds a single optimum.
The update of S and of the entries of ΔS corresponds to a vector addition. The
greedy strategy chooses the update that results in the best increase in S. If at
any time S cannot be increased, then no entry of ΔS yields a greater gradient
in the plane than S. But then in turn, no vector addition can ever produce an
updated entry of ΔS that has a higher gradient than that of S. Thus, the first
peak of S that the relative algorithm finds is the maximum of the algorithm. It
can even be observed that there are no further local optima, as the algorithm
always chooses the most gentle decrease in S.

Note that the above observations and lemmas generalize to all implementa-
tions of significance, such as relative performance significance, where a merge of
two clusters entails an addition of corresponding entries of ΔS (or of ΔMw and
ΔE[Mw]). However, special attention has to be paid to implementations, where
points in quadrant three can also lead to an increase. Then, two tangent queries
have to be performed and the update has to be adapted.

If a graph is known to have a fine community structure (e.g. Ω(
√

n) commu-
nities), the running time of Algorithm 1 decreases accordingly, if it is reasonable
to assume that the algorithm identifies the community structure.

Algorithm 2. Quick Divisive Merge

Input: ΔM, ΔE[M], geometric 2-D data structure P of points pij as described
above, reference point R

Output: Best merge, updated matrices Δ′M, Δ′
E[M]

Find pmax = pkl with tangent query through R1

Merge clusters corresponding to pmax and update P , ΔM and ΔE[M]2

accordingly
R ← R − (ΔMkl, ΔE[M]kl)3

5 Evaluation

In the following we first describe the general model used to generate the instances
for the experimental evaluation, then we present and discuss the results. Our
setup for the evaluation is an adaption of the benchmark presented in [21].
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5.1 Random Uniform Clustered Graphs

We use a random partition generator P(n, s, v) that creates a partition
(P1, . . . , Pk) of {1, . . . , n} with |Pi| being a normal random variable with ex-
pected value s and standard deviation s/v. Note that k depends on the choice
of n, s and v, and that the last element |Pk| of P(n, s, v) is possibly significantly
smaller than the others. In order to settle this, we relaxed the size constraint i.e.,
if the last cluster size variable |Pk| is too small or too large but the number of
unassigned or additional nodes is less than one third of the expected cluster size,
we add or delete the corresponding nodes. However, if the gap exceeds one third,
we reject the partition and generate a new one. This may bias the generation
process, yet we observed only few rejections during our experiments.

Given a partition P(n, s, v) and probabilities pin and pout, a uniformly ran-
dom clustered graph (G, C, ω) is generated by inserting intra-cluster edges with
probability pin and inter-cluster edges with probability pout. In case a graph gen-
erated that way is not connected, additional edges combining the components are
added. Edge weights ω are then set as to reflect the given partitioning. A weight
from [0, pout] for each inter-cluster edge and from [pin, 1] each for intra-cluster
edge is uniformly at random selected and assigned.

pout

pin

Asparse

A

AdenseAstrong

A ra
nd

.

Fig. 3. Combinations of pinand pout

For our experiments we considered the
following values of pin, pout and (n, s, v).
We set v = 4 and choose s uniformly
at random from

{
n
� | 2 ≤ � ≤

√
n
}
. For

n = 100 and n = 1000 we consider all
combinations of pin and pout at a distance
of 0.05. Among these we roughly refer
to combinations supporting dense, sparse,
strong and random community structure
by Adense, Asparse, Astrong and Arand., re-
spectively, as sketched out in Figure 3. For
each combination and each algorithm, ex-
periments were repeated until statistical
significance has been attained with an α-
level of 0.95 and a confidence interval of
length 0.1 for each quality index measured. With an average of 223 runs per
experiment we conducted about one million runs.

5.2 Evaluation Process

We conduct a qualitative comparison of the four implementations of the sig-
nificance paradigm, as described in Section 3.2. The corresponding clusterings
with high significance scores are obtained with the greedy heuristic based on
Algorithm 1. Similar to the benchmark presented in [21], we restrict ourselves
to qualitative aspects of the resulting clustering, and basic structural aspects,
such as the number of clusters. Although this is only peripheral to our work,
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the effective runtimes of our basic and non-optimized Java 1.5 implementations
ranged from a few milliseconds for 100 nodes using absolute variants to several
minutes for 1000 nodes using relative variants, on an AMD Opteron 2.2 GHz
machine.

5.3 Computational Results

Experiments. As a reference to the benchmark, we compare our findings to
an established clustering algorithm, Markov Clustering (MCL) [16], The results
of the experiments with respect to performance and coverage are given in Fig-
ure 4 and 5, respectively. We omit further plots illustrating the results on other
benchmark algorithms (e.g. GMC [1]), other quality indices (e.g. inter-cluster
conductance, see [21]) and structural observations due to space limitations.

At a first glance, the statistical results of the two absolute variants (S−
cov and

S−
perf) strongly resemble each other, see Figure 4(c) and 4(d). For example their

achieved quality does not differ by more than 2.6% with respect to performance,
see Figure 4. Similar observations hold for the number of clusters. However,
the relative variants (S÷

cov and S÷
perf) essentially differ, see Figure 4(e) and 4(f).

Alongside the disagreement on the quality indices, S÷
cov tends to identify fine

clusterings, i.e., 33 clusters on the average,while S÷
perf finds clusterings with a

coarse granularity, i.e., 2.9 clusters on the average. The absolute variants exhibit
a surprisingly similar behavior to the initial clustering with respect to the quality
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(f) S÷
perf -greedy approach

Fig. 4. Results showing the achieved performance. Probability pin is shown on the
y-axis, the x-axis holds pout.
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(f) S÷
perf -greedy approach

Fig. 5. Results showing the achieved coverage. Probability pin is shown on the y-axis,
the x-axis holds pout.

indices. The same holds for S÷
perf with respect to coverage and inter-cluster con-

ductance, however, the behavior is different for performance, but still acceptable
scores are attained. In contrast, S÷

cov clearly fails to achieve high values of cov-
erage and inter-cluster conductance, while its performance score is surprisingly
good. As observed in [21], the benchmark algorithms do not substantially surpass
the initial clustering in general. The same observation holds for the realizations
of significance.

In an overall assessment of the achieved clustering quality, the two absolute
variants excel with respect to performance for almost all generated instances,
with a small advantage of S−

perf over S−
cov (standard modularity). This is par-

ticularly meaningful since both do not yield an inappropriately high number of
clusters, which would artificially increase performance. With respect to coverage,
the absolute variants are only surpassed by the few algorithms that produced
a substantially coarser clustering, among those S÷

perf . An interesting observa-
tion is that, using the significance measures as quality indices themselves, all
four greedy algorithms attain the maximum corresponding score for most test-
sets. However, in the case of Astrong, the obtained differences in the significance
measures are small among most algorithms.

Explaining Some Artifacts. The high values of performance, attained by
S÷

cov for Asparse are due to the fact that the large number of clusters identified
by this algorithm yields a large fraction of non-connected pairs of nodes that are
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in different clusters. In turn, S÷
cov producing fine clusterings can be explained

as follows. Each step of the algorithm increases coverage and E[coverage], which
are both bounded by 1. These values increase faster, if an already large cluster
is further enlarged. Thus, the fraction tends to 1 for coarse clusterings, causing
S÷

cov to terminate early.

Real Data. We have applied our algorithms to a number of realworld networks,
due to limited space we only present the most prominent one. Figure 6 shows how
the variants of significance perform on the karate club network, studied initially
by Zachary [22]. The network represents friendship between the 34 members
of a university club that, due to an internal dispute, split up into two groups
(circular nodes on the left and square-shaped nodes on the right). Clearly, relative
performance significance (S÷

perf) excels here, misclassifying only a single rather
ambiguous node (10) and surpassing even modularity in precision.

(a) S−
cov (weighted modularity) (b) S−

perf

(c) S÷
cov (d) S÷

perf

Fig. 6. The results of the greedy significance algorithms (groupings) on Zachary’s
karate club [22] are in agreement with our experimental evaluation. The variants S−

cov

and S−
perf produce almost the same clustering. While both clusterings are meaningful

and close to the real grouping (node shapes), relative performance significance (S÷
perf)

yields a bisection which is almost exactly the real grouping. Obviously, S÷
cov fails to

find a reasonable clustering for this network.

Figure 7 shows an anonymized graph of the email contacts at our department
over a period of three months (approx. 44300 emails). Nodes represent persons
and weighted edges represent the number of email contacts between two cowork-
ers. The grouping depicts the department’s internal structure while the node
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colors (gray values) show the findings of community structure of the greedy algo-
rithm based on S−

perf . Since this example is based on the intuition that the graph
structure reflects the grouping, we cleaned the network of artifact nodes with no
links to other nodes in its reference cluster (approx. 7.5% of the original nodes).

Fig. 7. A network of email contacts at our department. The grouping depicts the
department’s internal structure as a reference, and the node colors (gray values) are
the community detection result of absolute performance significance (S−

perf). Inside

reference clusters, S−
perf misclassifies only 6.8% of nodes, most of which are due to

the highly ambiguous reference cluster A, which is split in half by the algorithm. The
clustering of S−

perf yields a noticeably higher (≈ 6%) coverage, which is partly due
to 9 clusters each being merged into other clusters they are strongly connected with.
In terms of inter-cluster conductance and all four realizations of significance, S−

perf
slightly surpasses the reference. However, the performance of the reference clustering
is approx. 2.4% higher than that found by S−

perf . On the whole, a closer investigation
explains most disagreements between the two clusterings, e.g., note the artifact nodes
in clusters B, C, D and the strong connections between clusters A,E1, . . . , E4, which
account for the aggregation done by the algorithm.

6 Conclusion

Based on modularity [2], a recently introduced quality measure for graph cluster-
ings, we formally stated a new clustering paradigm, significance, that considers
the trade-off between the achieved quality and the expected quality with respect
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to networks with a similar intrinsic structure. The performed experimental study
is a systematic evaluation of this paradigm and a substantial advance towards
a generalized understanding of the concept modularity is based upon. Summa-
rizing, the evaluation yields that the significance paradigm is highly feasible for
several realizations, producing clusterings with remarkable quality. Moreover,
the generality of our approach is corroborated by the good results of S÷

perf on
real networks and by the fact that there is a general algorithmic approach for
many relative realizations, as presented in Algorithm 2. We suggest S÷

perf as a
strong community detection algorithm if a low or constant number of clusters
is expected, such as coarsely structured social networks. Moreover, S−

perf offers a
promising alternative to standard modularity, since it yields clusterings of equal-
ing quality, yet it is based on the more appropriate quality index performance.
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12. Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Modularity from Fluctuations in
Random Graphs and Complex Networks. Physical Review E 70 (2004)

13. Reichardt, J., Bornholdt, S.: Statistical Mechanics of Community Detection.
arXiv.org cond-mat/0603718 (2006)

14. Duch, J., Arenas, A.: Community Detection in Complex Networks using Extremal
Optimization. Physical Review E 72 (2005)

15. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski,
Z., Wagner, D.: Maximizing modularity is hard, arxiv preprint. http://arxiv.org/
abs/physics/0608255 (2006)

http://arxiv.org/abs/physics/0608255
http://arxiv.org/abs/physics/0608255


Significance-Driven Graph Clustering 25

16. van Dongen, S.M.: Graph Clustering by Flow Simulation. PhD thesis, University
of Utrecht (2000)

17. Coffin, M., Saltzmann, M.J.: Statistical analysis of computational tests of algo-
rithms and heuristics. 12 (2000)

18. Newman, M.: Analysis of Weighted Networks. Technical report, Cornell University,
Santa Fe Institute, University of Michigan (2004)

19. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Technical report, University of New Mexico, University of Michigan
(2004)

20. Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: FOCS. (2002) 617–626
21. Brandes, U., Gaertler, M., Wagner, D.: Experiments on Graph Clustering Algo-

rithms. In: Proceedings of the 11th Annual European Symposium on Algorithms
(ESA’03). Volume 2832 of Lecture Notes in Computer Science. (2003) 568–579

22. Zachary, W.: An information flow model for conflict and fission in small groups.
Journal of Anthropological Research 33 (1977) 452–473

A Expected performance and the Heuristic

Lemma 3. If the probability of an edge between nodes v and w is defined to be
ω(v)ω(w)

(2W ) the expected value of performance is (for unweighted edges set ω(e) ≡ 1
for all edges)

2 1
2W

∑
i(

∑
v∈Ci

ω(v))2 + ωmax(n2 −
∑

i |Ci|2) − 2W

n(n − 1)ωmax

Proof.

E(p)

=
E(

∑
intra−e ω(e)) + E(

∑
inter−e(ωmax − ω(e))) + E(

∑
non−inter−e ωmax)

1
2n(n − 1)ωmax

=

∑
i

1
2

∑
v∈Ci

∑
w∈Ci

2W ω(v)ω(w)
(2W )2 +

∑
i

1
2

∑
v∈Ci

∑
w/∈Ci

(ωmax − 2W ω(v)ω(w)
(2W )2 )

1
2n(n − 1)ωmax

=
1

2W

∑
i(

∑
v∈Ci

ω(v))2 +
∑

i

∑
v∈Ci

∑
w/∈Ci

(ωmax)
n(n − 1)ωmax

−
1

2W

∑
i

∑
v∈Ci

∑
w/∈Ci

(ω(v)ω(w))
n(n − 1)ωmax

=
2 1

2W

∑
i(

∑
v∈Ci

ω(v))2 + ωmax(n2 −
∑

i |Ci|2) − 2W

n(n − 1)ωmax

Lemma 4. The heuristic of setting the expected weight of an edge between nodes
v and w to ω(v)ω(w)

(2W ) does not lead to an expected total edge weight of W .



26 M. Gaertler, R. Görke, and D. Wagner

Proof.

∑

{v,w}
v,w∈V

ω(v) · ω(w)
2W

=
1
2

⎛

⎜
⎜
⎝

∑

(v,w)
v,w∈V

ω(v) · ω(w)
2W

+
∑

v∈V

(ω(v))2

2W

⎞

⎟
⎟
⎠ (5)

=
1

4W

(
∑

v∈V

ω(v)

)2

+
1

4W

∑

v∈V

(ω(v))2 = W +
1

4W

∑

v∈V

(ω(v))2

︸ ︷︷ ︸
>0 since W �=0

	= W (6)

Thus, the expected sum of edge weights does not equal W .

Note that if we do not allow self-loops we obtain a similar result. However, since
in most real-world graphs the maximum node degree is clearly sublinear in the
total sum of edge weights, the relative error, caused by the abovementioned edge
probabilities, tends to zero. This can be observed in Equation 6.
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Abstract. We present a polynomial-time approximation algorithm for
legally coloring as many edges of a given simple graph as possible using
two colors. It achieves an approximation ratio of 468

575 . This improves on
the previous best (trivial) ratio of 4

5 .

1 Introduction

Given a graph G and a natural number t, the maximum edge t-coloring problem
(called Max Edge t-Coloring for short) is to find a maximum set F of edges
in G such that F can be partitioned into at most t matchings of G. Motivated
by call admittance issues in satellite based telecommunication networks, Feige
et al. [1] introduced the problem and proved its APX-hardness. Their APX-
hardness proof indeed shows that the problem remains APX-hard even if we
restrict the input graph to a simple graph and fix the input integer t to 2. We call
this restriction (special case) of the problem Max Simple Edge 2-Coloring.

Since Max Edge t-Coloring and its special cases are hard, it is interesting
to design approximation algorithms for them. As observed by Feige et al. [1],
Max Edge t-Coloring is obviously a special case of the well-known maximum
coverage problem (see [3]). Since the maximum coverage problem can be approx-
imated by a greedy algorithm within a ratio of 1 − (1 − 1

t )
t [3], so can be Max

Edge t-Coloring. In particular, the greedy algorithm achieves an approxima-
tion ratio of 3

4 for Max Edge 2-Coloring which is the special case of Max
Edge t-Coloring where the input number t is fixed to 2. Feige et al. [1] has
improved the trivial ratio 3

4 to 10
13 by an LP approach. They also pointed out

that for Max Simple Edge 2-Coloring, the ratio 10
13 can be further improved

to 4
5 by the following simple algorithm:

Input: A simple graph G.
1. Compute a maximum subgraph H of G such that the degree of each vertex

in H is at most 2 and there is no 3-cycle in H . (Comment: This step can be
done in O(n3) time [2].)

2. Remove one edge from each odd cycle of H .
Output: H .

Kosowski et al. [6] also considered Max Simple Edge 2-Coloring. They
presented an approximation algorithm that achieves a ratio of 28Δ−12

35Δ−21 , where Δ

M.-Y. Kao and X.-Y. Li (Eds.): AAIM 2007, LNCS 4508, pp. 27–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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is the maximum degree of a vertex in the input simple graph. This ratio can be
arbitrarily close to the trivial ratio 4

5 because Δ can be very large.
In this paper, we present a polynomial-time approximation algorithm for Max

Simple Edge 2-Coloring which achieves a ratio of 468
575 . To achieve this, we

first design a randomized algorithm and then derandomize it. The analysis of
our algorithm is quite nontrivial.

Kosowski et al. [6] showed that approximation algorithms for Max Simple
Edge 2-Coloring can be used to obtain approximation algorithms for cer-
tain packing problems and fault-tolerant guarding problems. Combining their
reductions and our improved approximation algorithm for Max Simple Edge
2-Coloring, we can obtain improved approximation algorithms for their pack-
ing problems and fault-tolerant guarding problems immediately.

2 Basic Definitions

Throughout the remainder of this paper, a graph means a simple undirected
graph (i.e., it has neither parallel edges nor self-loops).

Let G be a graph. We denote the vertex set of G by V (G), and denote the
edge set of G by E(G). The degree of a vertex v in G, denoted by dG(v), is the
number of edges incident to v in G. A vertex v of G with dG(v) = 0 is called an
isolated vertex. An independent set of G is a set S of vertices of G such that no
two vertices of S are adjacent in G.

A cycle in G is a connected subgraph of G in which each vertex is of degree 2.
A path in G is a connected subgraph of G in which exactly two vertices are of
degree 1 and the others are of degree 2. The length of a cycle or path C is the
number of edges in C. A cycle of odd (respectively, even) length is called an odd
(respectively, even) cycle. A k-cycle is a cycle of length k. Similarly, a k+-cycle
is a cycle of length at least k. A path component (respectively, cycle component
of G is a connected component of G that is a path (respectively, cycle). Note
that an isolated vertex of G is not a path component of G.

For a function b mapping each vertex v of G to a nonnegative integer, a b-
matching of G is a subgraph H of G such that dH(v) ≤ b(v) for all vertices
v of H . When b(v) ≤ 1 for all vertices v of G, a b-matching of G is called a
matching of G. The size of a b-matching M of G, denoted by |M |, is the number
of edges in M . Given a graph G and a function b mapping each vertex v to a
nonnegative integer, the maximum b-matching problem is to find a b-matching of
G of maximum size. Similarly, given a graph G, the maximum matching problem
is to find a matching of G of maximum size. G is edge-2-colorable if E(G) can
be partitioned into two matchings. Thus, Max Simple Edge 2-Coloring is
the problem of finding a maximum edge-2-colorable subgraph in a given graph.
Note that G is edge 2-colorable if and only if each connected component of G is
an isolated vertex, a path, or an even cycle.

For a random event A, Pr[A] denotes the probability that A occurs. For two
random events A and B, Pr[A | B] denotes the probability that A occurs given
the occurrence of B. For a random variable X , E [X ] denotes its expected value.
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3 The Algorithm

Throughout this section, fix a graph G and a maximum edge-2-colorable sub-
graph Opt.

The basic ideas behind our algorithm are as follows. Like the simple algorithm
described in Section 1, our algorithm first computes a maximum subgraph H of G
such that the degree of each vertex in H is at most 2 and there is no 3-cycle in H .
Still like the simple algorithm, our algorithm needs to delete one edge from each
odd cycle of H so that it becomes edge 2-colorable. After this deletion process, G
may have some edges e such that both endpoints of e are of degree at most 1 in H
and appear in different connected components of H . For convenience, let us call
such an edge of G an available bridge. Clearly, an available bridge can be added
to H without invalidating the edge-2-colorability of H . Of course, we do not want
to add only one available bridge to H but want to add many available bridges to
H simultaneously. Unfortunately, two available bridges may conflict each other,
i.e., adding them to H simultaneously invalidates the edge-2-colorability of H . In
order to find a large set of nonconflicting available bridges, we may first construct
an auxiliary graph B whose endpoints are the endpoints of paths of H (after
the deletion process) and whose edges are the available bridges, and then find a
maximum b-matching N in B where b(v) = 2 − dH(v) for each vertex v of B.
We now add the edges of N to H simultaneously, obtaining a graph H ′ whose
connected components are paths, even cycles, or odd cycles. Each odd cycle of
H ′ must contain at least two edges of N and we can delete exactly one edge
of N from each odd cycle of H ′. The resulting H ′ is now edge 2-colorable and
contains at least 1

2 |N | more edges than the output of the simple algorithm.
Unfortunately, |N | may be small and hence the above basic ideas do not work.

So, we modify the ideas as follows. First, we split the deletion process into two:
7-arbitrary and 5-random. In the 7-arbitrary deletion process, we only delete one
(arbitrary) edge from each odd 7+-cycle of H . This process at most decreases
the number of edges in H by a fraction of 1

7 , which is significantly smaller than
the fraction of 1

5 decreased by the original deletion process. After the 7-arbitrary
deletion process, we construct an auxiliary graph A (instead of constructing B
as above), where V (A) consists of those vertices v in H such that v is of degree
at most 1 in H or appears on a 5-cycle in H and E(A) consists of those edges
{u, v} of G such that u and v belong to different connected components of H .
We further construct a maximum b-matching M in A (instead of constructing N
as above), where b(v) = 1 if v is a vertex of a 5-cycle in H while b(v) = 2−dH(v)
otherwise. Obviously, |M | may be much larger than |N |, especially when there
are a lot of 5-cycles in H . In particular, if we let EA,ex

opt denote the set of edges
contained in both A and Opt, we can easily prove that |M | ≥ 1

2 |EA,ex
opt | (see

Lemma 4 below). Now, it comes the 5-random deletion process: We select one
edge from each 5-cycle uniformly at random and delete it from H . As before, we
call an edge e of A an available bridge if both endpoints of e become of degree
at most 1 in H after the 5-random deletion process. Obviously, each edge of M
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becomes an available bridge with probability at least 2
5 . Thus, we can expect at

least 1
5 |EA,ex

opt | available bridges in M , which can then be added to H as before
to obtain H ′.

By the discussion in the last paragraph, if |EA,ex
opt | is significantly large, then

the above modified ideas lead to a randomized algorithm whose output can
be expected to contain significantly more edges than the output of the simple
algorithm. So, the problematic case happens when |EA,ex

opt | is not significantly
large. A large portion of the analysis of our algorithm is devoted to this case.
Intuitively speaking, we can prove that in this problematic case, the simple
algorithm should achieve an approximation ratio better than 4

5 .
We next give a formal description of our algorithm. Given G, our algorithm

finds an edge-2-colorable subgraph of G as follows.

1. Compute a maximum subgraph H of G such that each connected component
of H is an isolated vertex, a path, or a 4+-cycle. (Comment: The set of
vertices v of H with dH(v) ≤ 1 is an independent set of G because of the
maximality of H .)

2. Remove one (arbitrary) edge from each odd 7+-cycle of H .
3. For i ∈ {0, 1}, let Ti be the set of vertices v of H with dH(v) = i.
4. Let V5c be the set of vertices on 5-cycles of H .
5. Construct an auxiliary graph A, where V (A) = T0 ∪ T1 ∪ V5c and E(A)

consists of those {u, v} ∈ E(G) such that no connected component of H
contains both u and v.

6. Compute a maximum b-matching M in A, where b(v) = 2 − dH(v) for each
v ∈ T0 ∪ T1 and b(v) = 1 for each v ∈ V5c.

7. Choose one edge from each 5-cycle of H uniformly and independently at
random and remove it from H .

8. Let M ′ be the set of all edges {u, v} in M such that dH(u)+ dM (u) ≤ 2 and
dH(v) + dM (v) ≤ 2.

9. Add the edges in M ′ to H . (Comment: Each connected component of H is
an isolated vertex, a path, or a cycle.)

10. For each odd cycle C in H , select one edge in E(C) ∩ M ′ uniformly and
independently at random and delete it from H .

11. Output H .

3.1 The First Analysis

For each i ∈ {1, 2, 7, 9, 10}, let Hi be the content of graph H immediately after
Step i of our algorithm. Note that H10 is the output of our algorithm. Related
to H1, we define two sets and two numbers as follows:

– E5c is the set of edges on the 5-cycles of H1.
– E5c = E(H1) − E5c.
– n7c+ is the number of odd 7+-cycles of H1.
– npc is the number of path components of H1.

Lemma 1. |V (H1) − V (A)| = |E5c| − 2n7c+ − npc.
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Proof. For each path component P of H1, |E(P )| = |V (P )| − 1 and two vertices
of P are contained in A. So, each path component of H1 contributes 1 to the
value of |E5c| − |V (H1) − V (A)|. Similarly, for each odd 7+-cycle C of H1,
|E(C)| = |V (C)| and two vertices of C are contained in A. Thus, each odd 7+-
cycle of H1 contributes 2 to the value of |E5c|− |V (H1)−V (A)|. This completes
the proof of the lemma.

Related to Opt, we define five sets of edges as follows:

– EA
opt is the set of edges {u, v} in Opt such that both u and v are vertices of

A.
– EA

opt = E(Opt) − EA
opt.

– EA,5c
opt (respectively, EA,7c+

opt ) is the set of edges {u, v} ∈ EA
opt such that some

5-cycle (respectively, path component) of H2 contains both u and v. (Com-
ment: By the maximality of E(H1), there is no edge {u, v} ∈ EA

opt such that
some path component of H1 contains both u and v. So, the endpoints of
each edge in EA,7c+

opt must appear on the same odd 7+-cycle of H1.)
– EA,ex

opt = EA
opt − (EA,5c

opt ∪ EA,7c+
opt ).

Lemma 2. |EA
opt| ≥ |E(Opt)| − 2|E5c| + 4n7c+ + 2npc.

Proof. Since each vertex can be adjacent to at most two edges in Opt, |E(Opt)−
EA

opt| ≤ 2|V (H1) − V (A)|. So, the lemma follows from Lemma 1 immediately.

Corollary 1. |EA,ex
opt | ≥ |E(Opt)| − 2|E5c| + 4n7c+ + 2npc − |EA,5c

opt | − |EA,7c+
opt |.

Proof. Obviously, |EA,ex
opt | = |EA

opt|−(|EA,5c
opt |+|EA,7c+

opt |). So, the corollary follows
from Lemma 2 immediately.

The following key lemma shows that each edge of M is include in the output
with a significantly high probability.

Lemma 3. For each edge e ∈ M , Pr[e ∈ E(H10)] ≥ 8
75 .

Proof. Fix an arbitrary edge e = {u, v} in M . We distinguish three cases as
follows:

Case 1: Both u ∈ V5c and v ∈ V5c. In this case, since Pr[dH7 (u) = 1] = 2
5 ,

Pr[dH7(v) = 1] = 2
5 , dM (u) ≤ 1, and dM (v) ≤ 1, we have Pr[e ∈ M ′] = 4

25 . Thus,
it remains to show that Pr[e ∈ E(H10) | e ∈ M ′] ≥ 2

3 . Assume that e ∈ M ′. If
no odd cycle of H9 contains e, then we are done. So, further assume that some
odd cycle C of H9 contains e. We claim that C contains at least three edges of
M ′. For a contradiction, assume that C contains only one edge e′ of M ′ other
than e. Obviously, if we delete e and e′ from C, we obtain two paths P1 and
P2 both of which are connected components of H7. Moreover, one of u and v is
an endpoint of P1 and the other is an endpoint of P2. Now, since u ∈ V5c and
v ∈ V5c, P1 and P2 must have been obtained in Step 7 by deleting one edge from
each 5-cycle of H1. So, both P1 and P2 are of length 4. However, this implies
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that the length of C is 10 which is even, a contradiction. Hence, the claim holds.
By the claim, we have Pr[e ∈ E(H10) | e ∈ M ′] ≥ 2

3 immediately.
Case 2: Exactly one of u and v is contained in V5c. We assume that u ∈ V5c

but v �∈ V5c; the other case is similar. Then, Pr[dH7 (u) = 1] = 2
5 and dM (u) ≤ 1.

Moreover, v ∈ T0 or v ∈ T1. In the former case, dH7(v) = 0 and dM (v) ≤ 2. In the
latter case, dH7(v) = 1 and dM (v) ≤ 1. So, in both cases, dH7(v) + dM (v) ≤ 2.
Consequently, Pr[e ∈ M ′] ≥ 2

5 · 1 = 2
5 . Thus, it suffices to show that Pr[e ∈

E(H10) | e ∈ M ′] ≥ 1
2 . Assume that e ∈ M ′. If no odd cycle of H9 contains e,

then we are done. On the other hand, if some odd cycle C of H9 contains e, then
the assumption u ∈ V5c guarantees that C contains at least two edges of M ′ and
hence Pr[e ∈ E(H10) | e ∈ M ′] ≥ 1

2 .
Case 3: Both u �∈ V5c and v �∈ V5c. Then, as discussed in Case 2 about v, we

have dH7(u) + dM (u) ≤ 2 and dH7 (v) + dM (v) ≤ 2. So, Pr[e ∈ M ′] = 1. Thus,
it suffices to show that Pr[e ∈ E(H10) | e ∈ M ′] ≥ 1

2 . Assume that e ∈ M ′. If
no odd cycle of H9 contains e, then we are done. So, further assume that some
odd cycle C of H9 contains e. We claim that C contains at least two edges of
M ′. For a contradiction, assume that the claim is false. Then, the path obtained
from C by deleting e is a connected component of H2. However, this contradicts
the construction of graph A in Step 5. Thus, the claim holds. Consequently,
Pr[e ∈ E(H10) | e ∈ M ′] ≥ 1

2 .

By Lemma 3 and the algorithm, we have the following corollary immediately:

Corollary 2. E [|E(H10)|] ≥ |E5c| − n7c+ + 4
5 |E5c| + 8

75 |M |.

The following lemma proves a simple lower bound on |M |.

Lemma 4. |M | ≥ |EA,ex
opt |/2.

Proof. Let M ′′ be a maximum matching in graph A. Since Opt has no odd cycle,
EA,ex

opt can be partitioned into two matchings of A. So, |M ′′| ≥ |EA,ex
opt |/2. On

the other hand, since M is a maximum b-matching of A with b(v) ≥ 1 for each
v ∈ V (A), we have |M | ≥ |M ′′|. Thus, the lemma holds.

Theorem 1. E [|E(H10)|] ≥ 146
175 |E(Opt)| + 2

105 |E5c| − 4
75 |EA,5c

opt | − 4
75 |EA,7c+

opt |.

Proof. Combining Corollary 2 and Lemma 4, we have

E [|E(H10)|] ≥ |E5c| − n7c+ +
4
5
|E5c| +

4
75

|EA,ex
opt |.

So, by Corollary 1 and a simple calculation, we have

E [|E(H10)|] ≥ 4

75
|E(Opt)|+67

75
|E5c|+

4

5
|E5c|−

59

75
n7c++

8

75
npc−

4

75
|EA,5c

opt |− 4

75
|EA,7c+

opt |.

Consequently, since n7c+ ≤ (|E(H1)| − |E5c|)/7 and |E5c| = |E(H1)| − |E5c|, we
have

E [|E(H10)|] ≥ 4
75

|E(Opt)| +
82
105

|E(H1)| +
2

105
|E5c| −

4
75

|EA,5c
opt | − 4

75
|EA,7c+

opt |.

Now, since |E(H1)| is at least as large as |E(Opt)|, the theorem follows.
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The following corollary shows that our algorithm achieves an expected ratio
of 304

375 .

Corollary 3. E [|E(H10)|] ≥ 304
375 |E(Opt)| + 2

125 |E5c|.

Proof. Obviously, |EA,7c+
opt | ≤ n7c+ ≤ 1

7 |E5c|. Moreover, since Opt cannot contain
a 5-cycle, EA,5c

opt contains at most four edges {u, v} with u ∈ V (C) and v ∈ V (C)
for each 5-cycle C of H1. Consequently, |EA,5c

opt | ≤ 4
5 |E5c| = 4

5 |E(H1)| − 4
5 |E5c|.

Also recall that |E(H1)| ≥ |E(Opt)|. Now, by the last inequality in the proof of
Theorem 1, the corollary follows.

In the next subsection, we will give another analysis of the algorithm and combine
it with the analysis in this section to obtain a better ratio.

3.2 The Second Analysis

Let K be the graph with vertex set V (A) and edge set EA
opt − (EA,5c

opt ∪ EA,7c+
opt ).

Lemma 5. There are at least 5
4 |EA,5c

opt | vertices v ∈ V5c with dK(v) < 2.

Proof. Fix an arbitrary 5-cycle C of H1. Let F be the number of edges {u, v} ∈
EA,5c

opt with {u, v} ⊆ V (C). Let W be the set of the endpoints of the edges in F .
Obviously, for each v ∈ W , dK(v) < 2. We claim that |W | ≥ 5

4 |F |. To see this,
first observe that we always have |W | ≥ |F | + 1. Moreover, |F | ≤ 4 because Opt
cannot contain a 5-cycle. Thus, the claim holds. The claim implies the lemma
immediately because summing up 5

4 |F | over all 5-cycles C of H1 yields the bound
5
4 |EA,5c

opt |.

Besides Lemma 4, we have another (less obvious) lower bound on |M |.

Lemma 6. |M | ≥ |EA
opt| − |E5c| − 2n7c+ − 2npc + 1

4 |EA,5c
opt | + |EA,7c+

opt |.

Proof. Let h be the number of vertices v ∈ V5c with dK(v) = 2. By Lemma 5,
h ≤ |E5c| − 5

4 |EA,5c
opt |.

Let � be the number of vertices v ∈ T1 with dK(v) = 2. We claim that
� ≤ 2(n7c++npc)−2|EA,7c+

opt |. To see this, first observe that |T1| = 2(n7c++npc).
Moreover, if {u, v} ∈ EA,7c+

opt , then both dK(u) ≤ 1 and dK(v) ≤ 1. Now, since
no two edges of EA,7c+

opt can share an endpoint, the claim holds.
Obviously, if we modify K by removing one edge from each v ∈ V5c ∪ T1 with

dK(v) = 2, we obtain a b-matching of A. So, since M is a maximum b-matching
of A, we have

|M | ≥ |EA
opt| − |EA,5c

opt | − |EA,7c+
opt | − h − �.

Thus, by the aforementioned bounds on h and �, the lemma holds.

Theorem 2. E [|E(H10)|] ≥ 82
105 |E(Opt)| + 2

105 |E5c| + 2
75 |EA,5c

opt | + 8
75 |EA,7c+

opt |.
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Proof. Combining Corollary 2 and Lemma 6, we have

E [|E(H10)|] ≥ |E5c| −
91

75
n7c+ +

52

75
|E5c| +

8

75
|EA

opt| −
16

75
npc +

2

75
|EA,5c

opt | + 8

75
|EA,7c+

opt |.

So, by Lemma 2 and a simple calculation, we have

E [|E(H10)|] ≥ 8
75

|E(Opt)|+59
75

|E5c|+
52
75

|E5c|−
59
75

n7c++
2
75

|EA,5c
opt |+ 8

75
|EA,7c+

opt |.

Consequently, since n7c+ ≤ |E5c|/7, we have

E [|E(H10)|] ≥ 8
75

|E(Opt)| +
354
525

|E5c| +
52
75

|E5c| +
2
75

|EA,5c
opt | + 8

75
|EA,7c+

opt |.

Since |E5c| + |E5c| = |E(H1)|, we have

E [|E(H10)|] ≥ 8
75

|E(Opt)| +
354
525

|E(H1)| +
10
525

|E5c| +
2
75

|EA,5c
opt | + 8

75
|EA,7c+

opt |.

Now, since |E(H1)| ≥ |E(Opt)|, the theorem follows.

Corollary 4. E [|E(H10)|] ≥ 1258
1575 |E(Opt)| + 2

105 |E5c|.

Proof. By Theorem 1, we have

1
3
E [|E(H10)|] ≥ 146

525
|E(Opt)| +

2
315

|E5c| − 4
225

|EA,5c
opt | − 4

225
|EA,7c+

opt |.

On the other hand, by Theorem 2, we have

2
3
E [|E(H10)|] ≥ 164

315
|E(Opt)| +

4
315

|E5c| +
4

225
|EA,5c

opt | + 16
225

|EA,7c+
opt |.

So, summing up the left sides and the right sides of the above two inequalities
respectively, we have

E [|E(H10)|] ≥ 1258
1575

|E(Opt)| +
2

105
|E5c|.

Theorem 3. E [|E(H10)|] ≥ 468
575 |E(Opt)|.

Proof. By Corollary 3, we have

25
46

E [|E(H10)|] ≥ 152
345

|E(Opt)| +
1

115
|E5c|.

By Corollary 4, we have

21
46

E [|E(H10)|] ≥ 629
1725

|E(Opt)| +
1

115
|E5c|.

So, summing up the left sides and the right sides of the above two inequalities
respectively, we have

E [|E(H10)|] ≥ 463
575

|E(Opt)| +
1

115
|E(H1)| ≥ 468

575
|E(Opt)|.
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3.3 Derandomization

Our algorithm makes random choices only in Steps 7 and 10. To derandomize
Step 10, we just modify it as follows:

10. For each odd cycle C in H , select an arbitrary edge of C and delete it from H .

Because the input graph is unweighted, it does not matter which edge is
deleted from each odd cycle in Step 10. So, it should be clear that the above
modification of Step 10 does not affect the approximation ratio achieved by the
algorithm.

In Step 7, we make a random choice for each 5-cycle. In our above analysis of
the algorithm, only the proof of Lemma 3 is based on the mutual independence
between these random choices. Indeed, by carefully inspecting the proof, we can
see that the proof is still valid even if the random choices made in Step 7 are only
pairwise independent. So, we can derandomize it via conventional approaches.
Therefore, we have the following theorem:

Theorem 4. There is an O(n2m2)-time approximation algorithm for Max Sim-
ple Edge 2-Coloring achieving a ratio of 468

575 , where n (respectively, m) is
the number of vertices (respectively, edges) in the input graph.

Proof. We estimate the running time of the derandomized algorithm as follows.
Step 1 can be done in O(n2m2) time [2]. Obviously, Steps 2 through 4 can be
done in O(n) time. Step 5 can be trivially done in O(n2) time. Since b(v) ≤ 2
for each vertex v, Step 6 can be done in O(

√
nm) time. In Step 7, we need to

generate O(n) pairwise independent random integers. A conventional way to do
this uses two random seeds s1 and s2 both of value O(n). So, the sample space
of (s1, s2) is of size O(n2). For each sample (s1, s2) in the space, we perform
Steps 8 through 11 to obtain an output H(s1, s2). This takes a total time of (n3)
because Steps 8 through 11 can be done in O(n) time. We then find the sample
(s1, s2) in O(n2) time such that |H(s1, s2)| is maximized, and further output
H(s1, s2).

4 An Application

Let G be a graph. An edge cover of G is a set F of edges of G such that each vertex
of G is incident to at least one edge of F . For a natural number k, a [1,Δ]-factor
k-packing of G is a collection of k disjoint edge covers of G. The size of a [1,Δ]-
factor k-packing {F1, . . . , Fk} of G is |F1| + · · · + |Fk|. The problem of deciding
whether a given graph has a [1,Δ]-factor k-packing was considered in [4,5]. In [6],
Kosowski et al. defined the minimum [1,Δ]-factor k-packing problem (Min-k-FP)
as follows: Given a graph G, find a [1,Δ]-factor k-packing of G of minimum size
or decide that G has no [1,Δ]-factor k-packing at all.

According to [6], Min-2-FP is of special interest because it can be used to
solve a fault tolerant variant of the guards problem in grids (which is one of the
art gallery problems [7,8]). Indeed, they proved the following:
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Lemma 7. If Max Simple Edge 2-Coloring admits an approximation al-
gorithm A achieving a ratio of α, then Min-2-FP admits an approximation
algorithm B achieving a ratio of 2 − α. Moreover, if the time complexity of A is
T (n), then the time complexity of B is O(T (n)).

So, by Theorem 4, we have the following immediately:

Theorem 5. There is an O(n2m2)-time approximation algorithm for Min-2-
FP achieving a ratio of 682

575 , where n (respectively, m) is the number of vertices
(respectively, edges) in the input graph.

Previously, the best ratio achieved by a polynomial-time approximation algo-
rithm for Min-2-FP was 6

5 [6], although Min-2-FP admits a polynomial-time
approximation algorithm achieving a ratio of 42Δ−30

35Δ−21 , where Δ is the maximum
degree of a vertex in the input graph [6].

5 Final Remarks

When the input graph is restricted to simple graphs, Max Edge t-Coloring is
easier to approximate for large values of t as follows: Given G and t, first compute
a maximum b-matching M of G where b(v) = t for all vertices v of G, then
partition E(M) into t+1 matchings M1, . . . , Mt+1, and finally output the largest
t matchings among M1, . . . , Mt+1. This algorithm achieves an approximation
ratio of t

t+1 . In particular, this algorithm only achieves a ratio of 2
3 when t = 2.

The simple algorithm for Max Simple Edge 2-Coloring pointed out by Feige
et al. (see Section 1) can be viewed as an improvement over the above algorithm.
Our new algorithm can be viewed as a further improvement.
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Abstract. Given a digraph, suppose that some intruders hide on
vertices or along edges of the digraph. We want to find the minimum
number of searchers required to capture all the intruders hiding in the
digraph. In this paper, we propose and study two digraph searching mod-
els: strong searching and mixed strong searching. In these two search
models, searchers can move either from tail to head or from head to tail
when they slide along edges, but intruders must follow the edge directions
when they move along edges. We prove the monotonicity of each model
respectively, and show that both searching problems are NP-complete.

1 Introduction

The graph searching problem was introduced by Parsons [9], which is to find the
minimum number of searchers required to capture all the intruders hiding in a
graph. Megiddo et al. [8] proposed the edge search problem, in which there are
three types of actions for searchers, i.e., placing, removing and sliding, and an
edge is cleared only by a sliding action in a proper way. Kirousis and Papadim-
itriou [6] proposed the node search problem, in which there are only two types
of actions for searchers, i.e., placing and removing, and an edge is cleared if both
end vertices are occupied by searchers. Kirousis and Papadimitriou showed that
the node search number is equal to the pathwidth plus one. Bienstock and Sey-
mour [3] introduced the mixed search problem that combines the edge search and
node search problems. Thus, in the mixed searching problem, an edge is cleared
if both end vertices are occupied by searchers or cleared by a sliding action in
a proper way. In these three graph searching problems, intruders are invisible
and they can move at a great speed at any time along a path that contains no
searchers.

Monotonicity is a very important issue in graph searching problems. Megiddo
et al. [8] showed that the edge search problem is NP-hard. This problem belongs
to the NP class follows from the monotonicity result of [7] in which LaPaugh
showed that recontamination of edges cannot reduce the number of searchers
needed to clear a graph. Bienstock and Seymour [3] proposed a method that gives
a succinct proof for the monotonicity of the mixed search problem, which im-
plies the monotonicity of the edge search problem and the node search problem.
Fomin and Thilikos [4] provided a general framework that can unify monotonic-
ity results in a unique minmax theorem.
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An undirected graph is not always sufficient in representing all the infor-
mation of a real-world problem. Johnson et al. [5] generalized the concepts of
tree-decomposition and treewidth to digraphs and introduced a cops-and-robber
game on digraphs accordingly. Barat [2] introduced another cops-and-robber
game on digraphs. He proved that an optimal monotonic search strategy for a
digraph needs at most one more cop than the cop number of the digraph and he
conjectured that the monotonicity is held for this cops-and-robber game on di-
graphs. Alspach et al. [1] proposed four digraph search models in which searchers
cannot be removed from digraphs. Yang and Cao [10] studied two digraph search
models which are different from this paper in that all searchers and intruders
must follow the edge directions when they move along edges. Yang and Cao [11]
also introduced the directed vertex separation and investigated the relations be-
tween different digraph search models, directed vertex separation, and directed
pathwidth.

In some applications, searchers may not obey the edge directions. For example,
if an intruder hiding in a building with one-way locking doors (people can go
out but cannot go in without a key), then the intruder must go one-way through
a door (suppose that he has no keys), but the security personnel can go both
ways through a door because they have the keys. This motivates us to introduce
two search models on digraphs: the strong searching model and the mixed strong
searching model, in which intruders must follow the edge directions and searchers
need not.

2 Definitions and Notation

All digraphs in this paper contain at least one edge. Throughout this paper, we
use D to denote a digraph, and use (u, v) to denote a directed edge with tail u
and head v, and u � v to denote a directed path from u to v. Initially, all edges
of D are contaminated.

In the strong searching model, each intruder can move at a great speed at any
time from vertex u to vertex v along a directed path u � v that contains no
searchers. There are three types of actions for searchers: (1) placing a searcher on
a vertex, (2) removing a searcher from a vertex and (3) sliding a searcher along
an edge from one end vertex to the other. A strong search strategy is a sequence
of actions such that the final action leaves all edges of D uncontaminated (or
cleared). A contaminated edge (u, v) can be cleared in one of three ways by one
sliding action: (1) sliding a searcher from u to v along (u, v) while at least one
searcher is located on u, (2) sliding a searcher from u to v along (u, v) while all
edges with head u are already cleared, and (3) sliding a searcher from the head
v to the tail u along the edge (u, v). The digraph D is cleared if all of its edges
are cleared. The minimum number of searchers needed to clear D in the strong
searching model is the strong search number of D, denoted by ss(D).

In the strong searching model, a cleared edge (u, v) will be recontaminated if
there is a directed path w � v containing edge (u, v) and a contaminated edge
(w, w′) such that there is no searchers stationing on any internal vertex of this
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directed path. It is easy to see that only removing and sliding actions may cause
recontamination in the strong searching model. In order to simplify the case
analysis in a monotonicity proof, we want to restrict the cause for recontamina-
tion. For this reason, we will define the actions of searchers in the mixed strong
searching model in a slightly different way such that only removing actions may
cause recontamination. Its precise definition will be given in Definition 1.

We say that a vertex in D is occupied at some moment if at least one searcher
is located on this vertex at this moment. Any searcher that is not on D at some
moment is said to be free at this moment.

Let S be a strong search strategy and let Ai be the set of cleared edges
immediately after the ith action. S is monotonic if Ai ⊆ Ai+1 for each i. We
say that the strong searching model has the property of monotonicity (or is
monotonic) if for any digraph D, there exists a monotonic strong search strategy
that can clear D using ss(D) searchers.

3 Monotonicity of Mixed Strong Searching

We will show the monotonicity of the mixed strong searching model in this
section, which means that recontamination does not help to reduce the mixed
strong search number of a digraph.

Given a digraph in which all edges are contaminated, a mixed strong search
strategy is a sequence of actions such that all edges of the digraph are cleared after
the last action is executed. The mixed strong searching model can be obtained by
modifying the strong searching model as follows. Recall that there are three ways
to clear an edge by a sliding action in the strong searching model. In the mixed
strong searching model, we replace the first way by the node-search-clearing
rule: an edge can be cleared if both of its end vertices are occupied. Another
modification is to disallow the recontamination caused by a sliding action. Thus,
in a mixed strong search strategy, each sliding along an edge must clear this
edge if it is contaminated. More precisely, we define the five types of actions in
the mixed strong searching model as follows.

Definition 1. Let S = (s1, s2, . . . , sn) be a mixed strong search strategy for a
digraph D. For each action si in S, let Ai be the set of cleared edges and Zi

be the set of occupied vertices immediately after si, and let A0 = Z0 = ∅. Each
action si, 1 ≤ i ≤ n, is one of the following five types:

(a) (placing a searcher on v) Zi = Zi−1 ∪ {v} for some vertex v ∈ V (D) − Zi−1
and Ai = Ai−1 (note that each vertex in Zi has exactly one searcher because
v ∈ V (D) − Zi−1);

(b) (removing the searcher from v) Zi = Zi−1 − {v} for some vertex v ∈ Zi−1
and Ai = {e ∈ Ai−1 | if there is a directed path u � w containing e and an
edge e′ ∈ E(D) − Ai−1 such that w is the head of e and u is the tail of e′,
then u � w has an internal vertex in Zi};

(c) (node-search-clearing e) Zi = Zi−1 and Ai = Ai−1 ∪ {e} for some edge
e = (u, v) ∈ E(D) − Ai−1 with both ends u and v in Zi−1;
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(d) (forward edge-search-clearing e) Zi = (Zi−1−{u})∪{v} and Ai = Ai−1∪{e}
for some edge e = (u, v) ∈ E(D)−Ai−1 with u ∈ Zi−1 and v ∈ V (D)−Zi−1
and every (possibly 0) edge with head u belongs to Ai−1.

(e) (backward edge-search-clearing e) Zi = (Zi−1−{v})∪{u} and Ai = Ai−1∪{e}
for some edge e = (u, v) ∈ E(D)−Ai−1 with v ∈ Zi−1 and u ∈ V (D)−Zi−1
and either every edge with head v except e belongs to Ai−1 or no edge with
tail v belongs to Ai−1.

The mixed strong search number of a digraph D, denoted by mss(D), is the
minimum number of searchers needed to clear D in the mixed strong searching
model.

A mixed strong search strategy is monotonic if any cleared edge cannot be
recontaminated. We say that the mixed strong searching model is monotonic if
for any digraph D, there exists a monotonic mixed strong search strategy that
can clear D using mss(D) searchers.

From Definition 1, we know that at most one edge can be cleared in one
action and each vertex is occupied by at most one searcher at any time. Note
that recontamination in the mixed strong searching model is caused only by
removing actions.

Definition 2. Let D be a digraph. For an edge set X ⊆ E(D), a vertex in V (X)
is critical if it is the tail of an edge in X and the head of an edge in E(D) − X .
The set of all critical vertices in V (X) is denoted by δ(X).

From [2], we know that the parameter |δ| has the following property.

Lemma 1. For any X, Y ⊆ E(D), |δ(X ∩ Y )| + |δ(X ∪ Y )| ≤ |δ(X)| + |δ(Y )|.

Definition 3. For a digraph D, let mss(D) = k and let S = (s1, s2, . . . , sn) be
a mixed strong search strategy for D using k searchers. If si is a removing action
and there are k critical vertices immediately before si, then we say that si is a
k-critical-removing action. If S contains no k-critical-removing actions, we say
that S is a standard mixed strong search strategy.

We now show that k-critical-removing actions can be avoided.

Lemma 2. Let D be a digraph. If mss(D) = k, then there always exists a stan-
dard mixed strong search strategy that clears D using k searchers.

Proof. For a mixed strong search strategy S, let N(S) be the number of actions
before the last k-critical-removing action in S. Among all the mixed strong search
strategies of D using k searchers, choose a strategy S∗ = (s1, s2, . . . , sn) such that
N(S∗) is minimum. Clearly, if N(S∗) = 0, then there is no k-critical-removing ac-
tion in S∗ and S∗ is a standard mixed strong search strategy of D. Suppose that
N(S∗) = i ≥ 1. Then si+1 is the last k-critical-removing action. For 1 ≤ j ≤ n,
let Aj be the set of cleared edges and Zj be the set of occupied vertices imme-
diately after sj , and let A0 = Z0 = ∅. Suppose that si+1 removes the searcher
from vertex w ∈ Zi. Since si+1 is a k-critical-removing action, we know that
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|δ(Ai)| = k. Thus, δ(Ai) = Zi. It follows that all edges with tail w are contami-
nated immediately after si+1. We will modify S∗, by replacing si and si+1 with a
sequence of actions, to obtain a new strategy S′ such that the following two con-
ditions are satisfied: (1) the number of actions before the last k-critical-removing
action in S′ is less than i, i.e., N(S′) < i; and (2) D has the same cleared edge
set just before si+2 in both S′ and S∗. From Definition 1, we know that imme-
diately after a placing, removing, or forward edge-search-clearing action, there
are at most k − 1 critical vertices. Since |δ(Ai)| = k, action si can only be a
node-search-clearing (case 1) or a backward edge-search-clearing (case 2).

Case 1. The action si is a node-search-clearing action that clears (u, v) ∈
E(D) − Ai−1. If w = u, then replace si and si+1 by one removing action “re-
moving the searcher on w”. If w = v, let α be the searcher on w at si. It is easy to
see that Ai+1−Ai−1 = {(u, v)}. In this case (i.e., w = v), we replace si and si+1 by
four actions consecutively: “removing α from w”, “placing α on w”, “node-search-
clearing (u, w)”, and “removing α from w”. Notice that the fourth action is not a
k-critical-removing action because all out-edges of w are contaminated, that is, w
is not critical at this step. Thus, only the first action may be a k-critical-removing
action. If w 	= u and w 	= v, then replace si and si+1 by two actions consecutively:
“removing the searcher on w” and “node-search-clearing (u, v)”.

Case 2. The action si is a backward edge-search-clearing action that clears
(u, v) ∈ E(D)−Ai−1. From Definition 1, we know that w 	= v because v /∈ Zi. If
w = u, then replace si and si+1 by a removing action “removing the searcher on
v”. If w 	= u, it is easy to see that w, v ∈ Zi−1. Let α be the searcher on w and β
be the searcher on v just after si−1. Since si is a backward edge-search-clearing
action, we know that immediately before si, either every edge with tail v is
contaminated or every edge with head v except (u, v) is cleared. In the former
case, we replace si and si+1 by two actions consecutively: “removing α from
w” and “backward edge-search-clearing (u, v)”. In the latter case, if there is a
directed path from w to v such that this path does not pass through u and no
internal vertex in this path is occupied immediately after si−1, then it is easy
to see that just after si+1 is done in S∗, all edges with tail v are contaminated.
We replace si and si+1 by four actions consecutively: “removing α from w”,
“removing β from v”, “placing β on v”, and “backward edge-search-clearing
(u, v)”. Note that the second action is not a k-critical-removing action because
the number of critical vertices is at most k − 1 just before this action. Thus,
only the first action may be a k-critical-removing action. If there is no such a
path, all edges with head v are cleared just after si+1 is done in S∗. We replace
si and si+1 by two actions consecutively: “removing α from w” and “backward
edge-search-clearing (u, v)”.

It is easy to see that immediately before si+2, D has the same cleared edge set
in both S∗ and S′. Thus, S′ can also clear D with k searchers and N(S′) ≤ i−1.
This contradicts the assumption that N(S∗) is minimum. Therefore, N(S∗) = 0
and S∗ is a standard mixed strong search strategy of D using k searchers.

We now define the k-strong campaign that corresponds to the sequence of the
cleared edge sets in a mixed strong search strategy.
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Definition 4. Given a digraph D and a nonnegative integer k, a sequence (X0,
X1, . . . , Xn) of subsets of E(D) is called a k-strong campaign if it satisfies the
following three conditions:
(i) X0 = ∅, Xn = E(D), |δ(Xi)| ≤ k, and |Xj − Xj−1| ≤ 1, for 1 ≤ j ≤ n;
(ii) if |δ(Xi)| = k for some i satisfying 0 ≤ i ≤ n− 1, then Xi+1 = Xi ∪{(u, v)}

for some edge (u, v) ∈ E(D) − Xi such that v ∈ δ(Xi) and either u ∈ δ(Xi)
or v /∈ δ(Xi+1); and

(iii) if |δ(Xi)| = k and |δ(Xi+1)| < k for some i satisfying 0 ≤ i ≤ n − 2, then
Xi+1 ⊂ Xi+2.

A k-strong campaign is progressive if X0 ⊆ X1 ⊆ · · · ⊆ Xn and |Xj −Xj−1| = 1,
for 1 ≤ j ≤ n.

Let Ym be a digraph such that only one vertex in Ym has indegree m and out-
degree 0, which is called the sink of Ym, and all other m vertices of Ym have
indegree 0 and outdegree 1. An auxiliary digraph of a digraph D, denoted by
D∗

m, is a digraph which contains two disjoint subdigraphs D and Ym It is easy
to see that mss(D∗

m) = mss(D).

Lemma 3. Let D be a digraph. If mss(D) = k, then we can construct an aux-
iliary digraph D∗

m, m ≥ 0, such that there exists a k-strong campaign in D∗
m.

Lemma 4. Let D be a digraph. If there is a k-strong campaign in D, then there
is a progressive k-strong campaign in D.

Lemma 5. Let D be a digraph and (X0, X1, . . . , Xn) be a progressive k-strong
campaign in D, and let Xi − Xi−1 = {ei} for 1 ≤ i ≤ n. Then there is a
monotonic mixed strong search strategy that clears D using k searchers such
that the edges of D are cleared in the order e1, e2, . . . , en.

Proof. We construct the monotonic mixed strong search strategy inductively.
Suppose that we have cleared the edges e1, . . . , ej−1, 2 ≤ j ≤ n, in order and no
other edges have been cleared yet. Before we clear ej , we may remove searchers
such that each vertex in δ(Xj−1) is occupied by a searcher and all other searchers
are free. Let ej = (u, v). If |{u, v}∪δ(Xj−1)| ≤ k, then we may place free searchers
on both ends of ej and then clear ej by a node-search-clearing action. Assume
|{u, v} ∪ δ(Xj−1)| > k. There are only two cases.

Case 1. If |δ(Xj−1)| = k − 1, then {u, v} ∩ δ(Xj−1) = ∅. Since (u, v) /∈ Xj−1
and there is no searcher on v, no edge with tail v belongs to Xj−1. We can place
a searcher on v and then clear ej by a backward edge-search-clearing action.

Case 2. If |δ(Xj−1)| = k, since the k-strong campaign (X0, X1, . . . , Xn)
is progressive, it follows from Definition 4 that v ∈ δ(Xj−1). Since |{u, v} ∪
δ(Xj−1)| > k, we know that u /∈ δ(Xj−1). It follows from Definition 4 that
v /∈ δ(Xj). Thus, we can clear ej by sliding the searcher on v along (u, v) to u.

In all cases we can clear ej without any recontamination and no more than k
searchers are needed.

Now we can prove the monotonicity of the mixed strong searching model.

Theorem 1. For a digraph D, if mss(D) = k, then there is a monotonic mixed
strong search strategy that clears D using k searchers.
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4 Monotonicity of Strong Searching

In this section, we will prove the monotonicity of the strong searching model
by using a relation between strong searching and mixed strong searching under
certain transformation.

Lemma 6. For a digraph D, if D′ is a digraph obtained from D by replac-
ing each edge (u, v) ∈ E(D) with a directed path (u, v′, v) of length two, then
mss(D′) ≤ ss(D).

Proof. Let (s1, s2, . . . , sn) be a strong search strategy that clears D using k
searchers. We will inductively construct a mixed strong search strategy (S′

1, S
′
2,

. . . , S′
n) that clears D′ using k searchers, where S′

i is a subsequence of actions
corresponding to si. Since s1 is a placing action, let S′

1 be the same placing action.
Suppose that we have constructed S′

1, S
′
2, . . . , S

′
j−1 such that the following two

conditions are satisfied: (1) the set of occupied vertices immediately after sj−1
is the same as the set of occupied vertices immediately after the last action
in S′

j−1, and (2) if (u, v) ∈ E(D) is cleared immediately after sj−1, then the
corresponding two edges (u, v′) and (v′, v) are also cleared immediately after the
last action in S′

j−1. Note that there are three types of actions for sj. We now
construct S′

j in the following cases.

Case 1. If sj is a placing action that places a searcher on an unoccupied
vertex, S′

j will take the same action. If sj is a placing action that places a
searcher on an occupied vertex, S′

j is empty.
Case 2. If sj is a removing action that removes the only searcher from a

vertex, S′
j will take the same action. If sj is a removing action that removes a

searcher from a vertex occupied by at least two searchers, S′
j is empty.

Case 3. If sj is a sliding action that slides a searcher from vertex u to vertex
v along edge (u, v) and clears (u, v), we have two subcases.

Case 3.1. All edges with head u are cleared in D immediately before sj .
By the hypothesis, the vertex u ∈ V (D′) is also occupied and all edges with
head u are also cleared in D′ immediately after the last action in S′

j−1. If v is
not occupied, then we can construct S′

j as follows: “edge-search-clearing (u, v′)”,
and “edge-search-clearing (v′, v)”. If v is occupied, then we can construct S′

j

as follows: “edge-search-clearing (u, v′)”, “node-search-clearing (v′, v)”, and “re-
moving the searcher from v′”.

Case 3.2. At least one edge with head u is contaminated in D immediately
before sj . We know that there is at least one searcher on u while performing sj ,
which implies that u is occupied by at least two searchers immediately before sj .
By the hypothesis, the vertex u ∈ V (D′) is also occupied and we have at least
one free searcher immediately after the last action in S′

j−1. If v is not occupied,
then we can construct S′

j as follows: “placing a searcher on v′”, “node-search-
clearing (u, v′)”, and “edge-search-clearing (v′, v)”. If v is occupied, then we can
construct S′

j as follows: “placing a searcher on v′”, “node-search-clearing (u, v′)”,
“node-search-clearing (v′, v)”, and “removing the searcher from v′”.

Case 4. If sj is a sliding action that slides a searcher from vertex u to vertex
v along edge (u, v) but does not clear (u, v), we know that immediately before
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sj , u is occupied by only one searcher and at least one edge with head u is conta-
minated. By the hypothesis, the vertex u ∈ V (D′) is also occupied immediately
after the last action in S′

j−1. If v is occupied, then S′
j consists of only one action:

“removing the searcher from u”. If v is not occupied, then S′
j consists of two

actions: “removing the searcher from u” and “placing it on v”.
Case 5. If si is a sliding action that slides a searcher along (u, v) from v to

u without any recontamination, then we have two subcases regarding v.
Case 5.1. There are at least two searchers on v just before si. By the hy-

pothesis, the vertex v ∈ V (D′) is also occupied and we have at least one free
searcher immediately after the last action in S′

j−1. If u is unoccupied, then we
can construct S′

i as follows: “placing a searcher on v′”, “node-search-clearing
(v′, v)” and “backward edge-search-clearing (u, v′)”. If u is occupied, then we
can construct S′

i as follows: “placing a searcher on v′”, “node-search-clearing
(v′, v)”, “node-search-clearing (u, v′)” and “removing the searcher from v′”.

Case 5.2. There is only one searcher on v just before si, and either all the
edges with tail v are contaminated, or every edge with head v except (u, v)
is cleared. If u is unoccupied, then we can construct S′

i as follows: “backward
edge-search-clearing (v′, v)” and “backward edge-search-clearing (u, v′)”. If u is
occupied, then we can construct S′

i as follows: “backward edge-search-clearing
(v′, v)”, “node-search-clearing (u, v′)” and “removing the searcher from v′”.

Case 6. If si is a sliding action that slides a searcher along (u, v) from v to u
with recontamination, then there is only one searcher λ on v that is the head of
at least two contaminated edges and tail of at least one cleared edge just before
si. If u is unoccupied, then we can construct S′

i as follows: “removing λ from v”,
“placing λ on v”, “backward edge-search-clearing (v′, v)” and “backward edge-
search-clearing (u, v′)”. If u is occupied, then we can construct S′

i as follows:
“removing λ from v”, “placing λ on v”, “backward edge-search-clearing (v′, v)”,
“node-search-clearing (u, v′) and “removing λ from v′”.

It is easy to see that (S′
1, S

′
2, . . . , S

′
n) can clear D′ using k searchers. Therefore,

mss(D′) ≤ ss(D).

Theorem 2. For a digraph D, if ss(D) = k, then there is a monotonic strong
search strategy that clears D using k searchers.

5 NP-Completeness Results

Kirousis and Papadimitriou [6] proved that the node search problem is NP-
complete. In this section, we will establish a relationship between mixed strong
searching and node searching. Using this relation, we can prove the mixed strong
searching problem is NP-complete. We can then prove the strong searching prob-
lem is NP-complete from Theorem 2.

The minimum number of searchers needed to clear a graph G in the node
searching model is the node search number of G, denoted by ns(G).

Theorem 3. Let G be an undirected graph. If G̃ is a digraph obtained from G
by replacing each edge uv ∈ E(G) with two directed edges (u, v) and (v, u) of
multiplicity 2, then mss(G̃) = ns(G).
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Proof. In the mixed strong search model, there are five types of actions, plac-
ing, removing, node-search-clearing, forward edge-search-clearing and backward
edge-search-clearing, and in the node search model, there are only two types
of actions, placing and removing. Note that there is no “clearing” action in
the node search model corresponding to the node-search-clearing, forward edge-
search-clearing or backward edge-search-clearing action. A contaminated edge
is cleared in the node search model if both end vertices are occupied, while a
contaminated edge is cleared in the mixed strong search model only by a node-
search-clearing, forward edge-search-clearing or backward edge-search-clearing
action.

We first show that mss(G̃) ≤ ns(G). Let Sn be a monotonic node search
strategy that clears G using k searchers. Notice that Sn is a sequence of placing
and removing actions. We will construct a mixed strong search strategy Sm by
inserting some node-search-clearing actions into Sn as follows. Initially, we set
Sm = Sn. For each placing action s in Sn, let As be the set of cleared edges just
after s and Bs be the set of cleared edges just before s. If As − Bs 	= ∅, then
for each edge uv ∈ As − Bs, we insert four node-search-clearing actions into the
current Sm just after s such that they clear all the four edges corresponding to
uv. It is easy to see that Sm can clear G̃ using k searchers. Therefore, mss(G̃) ≤
ns(G).

We now show that ns(G) ≤ mss(G̃). Let Sm be a monotonic mixed strong
search strategy that clears G̃ using k searchers. We first prove that there is no
forward edge-search-clearing action in Sm. Suppose that s′ is a forward edge-
search-clearing action in Sm, which clears an edge (u, v) (i.e., one of the edges
with tail u and head v) by sliding a searcher from u to v. From Definition 1, all
in-edges of u are cleared. Since (v, u) is cleared but (u, v) is contaminated just
before s′, the vertex v must contain a searcher to protect (v, u) from reconta-
mination. From Definition 1, (u, v) must be cleared by a node-search-clearing
action because both u and v are occupied just before s′. This is a contradiction.
Thus, Sm consists of only four types of actions: placing, removing, node-search-
clearing and backward edge-search-clearing. Let Sn be a sequence of actions
obtained from Sm by replacing each node-search-clearing action and each back-
ward edge-search-clearing with an empty action. We next prove that Sn is a
node search strategy that clears G using k searchers.

When an edge (u, v) is cleared by a node-search-clearing action in Sm, the
corresponding edge uv in G is also cleared just before the corresponding empty
action in Sn because both u and v are occupied. Note that for any edge uv ∈
E(G), the corresponding four edges in G̃ cannot be cleared just by backward
edge-search-clearing actions in Sm. Thus, when one of these four edges is cleared
by a node-search-clearing action, uv is also cleared just before the corresponding
empty action in Sn. Since Sm is monotonic, it is easy to see that this uv will keep
cleared to the end of the search process if the four corresponding edges all are
cleared. Thus, Sn can clear G using k searchers, and therefore, ns(G) ≤ mss(G̃).

The Strong (resp. Mixed Strong) Searching problem can be described as follows:
Given a digraph D and an integer k, can we use k searchers to clear D under
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the strong (resp. mixed strong) search model? From Theorem 3, we can prove
the following result.

Theorem 4. The Mixed Strong Searching problem is NP-complete.

From Theorems 2 and 4, we can prove that the Strong Searching problem is
NP-hard. From Theorem 2, we can prove that the Strong Searching problem
belongs to NP. Therefore, we have the major result of this section.

Theorem 5. The Strong Searching problem is NP-complete.
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Abstract. An algorithm is presented for exactly counting the number of
maximum weight satisfying assignments of a 2-Cnf formula. The worst
case running time of O(1.246n) for formulas with n variables improves on
the previous bound of O(1.256n) by Dahllöf, Jonsson, and Wahlström.
The algorithm uses only polynomial space. As a direct consequence we
get an O(1.246n) time algorithm for counting maximum weighted inde-
pendent sets in a graph.

1 Introduction

There has a been a growing interest in the analysis of algorithms for NP-hard
problems, such as satisfiability [7] or graph coloring [2]. Improvements in the
exponential bounds are critical, for even a slight improvement from O(cn) to
O((c − ε)n) can significantly change the range of the problem being tractable.
Most of the super-polynomial algorithms known are only for decision problems.
As a natural extension we have counting problems, where we wish to not only
decide the existence of solution, but to count the number of solutions. Counting
problems are not only mathematically interesting, but they also arise in many
applications [16,17].

The decision problem of weighted 2-Sat is NP-hard and the corresponding
counting problem (#2-Sat) is #P-complete even for the unweighted case [13,19].
The class #P (proposed by Valiant [18]) is defined as {f : ∃ a non deterministic
polynomial time Turing Machine M such that on input x, M has exactly f(x)
accepting leaves}. We consider the problem of counting the number of maximum
weight satisfying assignments of 2-Cnf formulas. Earlier works in this area in-
clude papers by Dubois [10], Zhang [20], Littman et al. [15]. The algorithm by
Zhang [20] runs in O(1.618n) time, whereas the algorithm by Littman et al. runs
in O(1.381n) time.

Over a series of work done by Dahllöf et al. [4,5,6] presented an O(1.2561n)
time algorithm for #2-Sat. We improve this upper bound. Our algorithm uses
polynomial space and counts the number of maximum weighted satisfying as-
signments of a 2-Cnf formula in O(1.2461n) time. The weighted 2-Sat problem
is closely related to the well-studied problem of finding (or counting) maximum
� This material is based upon work supported by the National Science Foundation

under Grant CCR-0209099.
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weighted independent sets. Using a standard reduction (see for example [6]) we
also obtain an O(1.2461n) time algorithm for the problem of counting maximum
weighted independent sets (further discussion of this result is omitted).

Since the preliminary version of the paper appeared as the technical report
[11] our results have found applications in a variety of problems. Anglesmark [1]
noted that the faster algorithm for the decision 2-Sat leads to a faster algorithm
for the problem of MAX Hamming Distance (2, 2)-Csp. Very recently, Björklund
and Husfeldt [3] used our results to obtain a faster algorithm for determining the
chromatic number of graph. They also present a 2nnO(1) time and space algo-
rithm for counting k-colorings of a graph. Analogous results were also obtained
by Koivisto [12].

Our main improvement in the running time for 2-Sat, is by improved han-
dling of the subproblem with a restriction to at most three occurrences of every
variable, i.e., the corresponding constraint graph of the formula (formally defined
later ) is of degree at most three. Here, the decisive parameter determining the
running time is the number of degree 3 nodes. However, more progress in elim-
inating degree 3 nodes is possible when there are many of them. For example,
when the average degree is more than 12/5, we can find a degree 3 vertex with a
neighbor of degree 3, and both are eliminated in at least one of the assignments
of the first degree-3 vertex. We take advantage of this by choosing a different
complexity measure above 12/5. Our improved time bounds for degree 3 propa-
gate to formulas of higher degrees, because the average degree has a tendency to
shrink during the iterative algorithm. This extension to higher degrees is done
with the framework of Dahllöf et al. [6].

2 Preliminaries and Problem Definitions

We will employ notation similar to that proposed in [6]. A propositional variable,
or variable takes values true or false. A literal is a variable (x) or its negation
(¬x). A clause is a finite non empty collection of literals. A propositional formula
in conjunctive normal form is a conjunction of disjunction of literals. A k-Cnf
formula is a propositional formula in conjunctive normal form with the restriction
that each clause contains at most k literals.

#2-Sat is the problem of computing the number of maximum weight models
(a.k.a. satisfying assignments) for a 2-Cnf formula. With each literal l, a weight
w(l) ∈ N and a count c(l) ≥ 1 are associated; the vectors W and C are the
corresponding vectors. For a set of literals L, we define the weight and cardinality
of a model M respectively as

W(M) =
∑

{l∈L : l is true in M} w(l),

C(M) =
∏

{l∈L : l is true in M} c(l).

Given a 2-Cnf formula F , let V ar(F ) denotes the set of variables of F and
n(F ) = |V ar(F )|. A variable which occurs only as x or only as ¬x is called
monotone.
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We define the constraint graph G(F ) = (V ar(F ), E), as an undirected graph
where the vertex set is the set of variables and the edge set E is defined as

{(x, y) : x, y appear in the same clause of F}.

The degree d(x) of a variable x is the degree of x in G. We use d(F ) to denote
the maximum degree of any variable in F and nd(F ) is the number of variables
of degree d in F . Singleton variables are variables of degree 1. For convenience,
we use a slightly altered notion of neighborhood. The neighborhood of a vertex
x in the graph G, denoted by NG(x), is the set {y : (x, y) ∈ E} ∪ {x}. The size
of the neighborhood of x is S(x) =

∑
y∈NG(x) d(y).

We define m(F ) as
∑

x∈V ar(F ) d(x). Both n(F ) and m(F ) are used as measures
of formula complexity. For M being the set of all maximum weight models for
F and M ′ being any arbitrary maximum weight model in M define

#2-Sat(F, C, W ) =

(
∑

M∈M
C(M), W(M ′)

)

.

Throughout this paper, Õ(f(n)) will denote nO(1)f(n).

2.1 Estimation of Tree Size

Loosely speaking, the idea behind our algorithms is recursive decomposition
based on a popular approach that has originated in papers by Davis, Putnam,
Logemann and Loveland [9,8]. The recurrent idea behind these algorithms is to
choose a variable x and to recursively count the number of satisfying assignments
where x is true as well as those where x is false, i.e., we branch on x.

For #2-Sat we follow the analysis of Kullmann [14]. In the implicit branch-
ing tree constructed, let x be a node with 2 branches labeled with positive real
numbers t1, t2. The labels are the measures of the reduction in complexity in
the respective branch. The branching number is the largest real-valued solu-
tion of the function F(a) = 1 −

∑2
i=1 a−ti . For a branching tuple (t1, t2) the

branching number is denoted by τ(t1, t2). The branch from F to Fi is labeled
by ti = �f(F ) = f(F ) − f(Fi), where f(F ) is some algorithm specific measure
of complexity. Defining fmax(n) = maxn(F )=nf(F ), ensures a running time of
Õ(γfmax(n)), where γ is the largest branching number occurring in any tuple
of the branching tree. We will define the function f such that the worst case
branching number is τ(1, 1) = 2. Let l, l′ and l′′ denote literals over the variable
set V ar(F ). In a step satisfying literal l, we eliminate all the clauses of the form
(l ∨ l′) and replace all clauses of the form (¬l ∨ l′′) by l′′. We call a branching as
maximally unbalanced if clauses of only one form occur.

2.2 Helper Functions

This subsection deals with important functions used for reducing the input for-
mula. We use similar functions and structures as in [6], some of which have been
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reproduced for completeness. The first function called Propagate (Figure 1)
simplifies the formula by removing dead variables. The input to the algorithm
is the formula, count vector and weight vector. The four steps of the algorithm
are performed until not applicable. The function returns the updated formula,
the weight of the variables removed, and count for the eliminated variables.

Function Propagate(F, C, W )
(Initialize w ← 0, c ← 1)
1) If there exists a clause (1 ∨ . . .), then it is removed. Any variable a in the clause
which gets removed is handled according to following cases

a) If w(a) = w(¬a), then c ← c · (c(a) + c(¬a)); w ← w + w(a).
b) If w(a) < w(¬a), then c ← c · (c(¬a)); w ← w + w(¬a).
c) If w(a) > w(¬a), then c ← c · c(a); w ← w + w(a).

2) If there is a clause of the form (0 ∨ . . .), then remove 0 from it.
3) If there is a clause of the form (a), then remove the clause and c ← c · c(a); w ←
w + w(a), and, if a still appears in F then set F ← F [a = 1].
4) Return(F, c, w).

Fig. 1. Function Propagate

Function Reduce(F, v, f)
(Assume F = F0 ∧ F1 with V ar(F0) ∩ V ar(F1) = {x})
1) Let f(Fi) ≤ f(F1−i), i ∈ {0, 1}.
2) Let (ct, wt) ← #2-Sat(Fi[x = 1], C, W ).
3) Let (cf , wf )bec #2-Sat(Fi[x = 0], C, W ).
4) Modify the vectors C and W so that c(x) ← ct · c(x), c(¬x) ← cf · c(¬x), w(x) ←
wt + w(x), w(¬x) ← wf + w(¬x).
5) Return #2-Sat(F1−i, C, W ).

Fig. 2. Function Reduce

Another function called Reduce (Figure 2) reduces the input formula. It takes
advantage of the fact that if a formula F can be partitioned into sub-formulas
F0 and F1 such that each clause of F belongs to either of them, and |V ar(F0) ∩
V ar(F1)| = 1, then we can remove F0 or F1 while appropriately updating count
and weight associated with the common variable. Let V ar(F0)∩V ar(F1) = {x}.
The input to the function is the formula, x, and some algorithm specific measure
of complexity f . We say that in such a situation that Reduce is applicable.
Among F0, F1 we always remove the one having a smaller value under f . Note
that Reduce needn’t be a polynomial time operation. We apply the function
Reduce as long as it is applicable. A formula F is called a maximally reduced
formula if this routine doesn’t apply. It can easily be verified that the value of
#2-Sat(F, C, W ) is preserved under both Propagate and Reduce routines.

3 Algorithm for #2-Sat

We have a main Algorithm C-2-Sat (Figure 3) which makes use of another
function C-2-Sat6 when d(F ) ≤ 6. The algorithms operate on all connected
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components of the constraint graph. The phrase branch on used in the algorithms
is a shorthand for technicalities described in Figure 5. Let F [x = 0] be the result
of assigning x = 0 in F . F [x = 1] is defined accordingly. The proof of correctness
of the Algorithm C-2-Sat is straightforward and can be shown as in [6].

Algorithm C-2-Sat(F, C, W )
1) If F contains no clauses, then return (1,0).
2) If F contains an empty clause, then return (0,0).
3) If G(F ) is disconnected, then return (c, w) where c ←

�j
i=0 ci, w ←

�j
i=0 wi, and

(ci, wi) ← C-2-Sat(Fi, C, W ) for connected components G(F0), . . . , G(Fj).
4) If there exists a non-monotone variable x with d(x) ≥ 6, then branch on x.
5) If d(F ) ≤ 6, then return C-2-Sat6(F, C, W ).
6) Pick a variable x of maximum degree and branch on it.

Fig. 3. Algorithm C-2-Sat

We now concentrate on the analysis of the running time for C-2-Sat6. For the
analysis we use a continuous and piecewise linear function f(n, m) similar to the
one introduced by [6] as a measure of complexity where n = n(F ) and m = m(F ).
A branching variable is chosen to optimize the progress in the next step. There
is a worst case branching associated with each value of m/n. Using a classical
model of complexity, such as n(F ), means that the worst case branching numbers
are smaller near the top of the branching tree and increase as we go down.
Informally, this is because the maximum degree d(F ) is smaller at the bottom
of the branching tree, hence smaller pieces of the formula are removed. The
estimation of the running time as Õ(γfmax(n)) (with fmax(n) = max{f(n, m) :
m ∈ N}) is best when the branching numbers are uniform throughout.

Algorithm C-2-Sat6(F, C, W )
(Assume d(F ) ≤ 6)
1) If F contains no clauses, then return (1,0).
2) If F contains an empty clause, then return (0,0).
3) If G(F ) is disconnected, then return (c, w) where c ←

�j
i=0 ci, w ←

�j
i=0 wi, and

(ci, wi) ← C-2-Sat6(Fi, C, W ) for connected components G(F0), . . . , G(Fj).
4) If Reduce is applicable, then apply it.
5) Pick a variable x of maximum degree, with the maximum S(x). There are two sub-
cases:

a) If NG(F )(x) is connected to the rest of the graph1 using only two external2

vertices (say) p and q, such that d(p) ≥ d(q), then branch on p.
b) Else branch on x.

Fig. 4. Algorithm C-2-Sat6

The complexity measure introduced by Dahllöf et al. [6] incorporates the
effects of the decreasing m/n quotient in the upper time bound, leading to a
1 Subgraph induced by the vertex set V ar(F ) \ NG(F )(x).
2 {p, q} ∩ NG(F )(x) = ∅.
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better worst case running time estimates. We will find a sequence of worst cases
as the m/n quotient increases. Each worst case i is associated with a piecewise
linear function fi(n, m) = ain + bim, a lower limit ki for m/n below which it
is possible that worse cases appear, and an upper limit ki+1 for the m/n above
which that worst case can’t occur. We define the coefficient χi by χi = ai + kibi

implying that f(n, m) = fi(n, m) = fi−1(n, m) = χin for m/n = ki. Now
fi(n, m) can also be expressed as fi(n, m) = χin + (m − kin)bi. We define a
Interval i as the range ki to ki+1. The formal definitions of the functions are
(similar to [6]):

1) Let (Ft, ct, wt) ← Propagate(F [x = 1], C, W ).
2) Let (Ff , cf , wf ) ← Propagate(F [x = 0], C, W ).
3) Let (c′

t, w
′
t) ← C-2-Sat(Ft, C, W ) and (c′

f , w′
f ) = C-2-Sat(Ff , C, W ).

4) Let Wtrue ← w(x) + wt + w′
t, Wfalse ← w(¬x) + wf + w′

f , Ctrue ← c(x) · ct · c′
t, and

Cfalse ← c(¬x) · cf · c′
f . There are 3 cases:

a) If Wtrue = Wfalse, then return(Ctrue + Cfalse, Wtrue).
b) Else if Wtrue > Wfalse, then return(Ctrue, Wtrue).
c) Else if Wtrue < Wfalse, then return(Cfalse, Wfalse).

Fig. 5. Shorthand for the phrase branch on x

f(n, m) = fi(n, m) where ki < m/n ≤ ki+1, 0 ≤ i ≤ 18,

fi(n, m) = ain + bim = χin + (m − kin)bi, 0 ≤ i ≤ 18,

χi = χi−1 + (ki − ki−1)bi−1, 1 ≤ i ≤ 19, χ0 = 0.

The values of ki, χi, ai, bi are in Figure 6. Also provided are the worst case
recurrences and the corresponding running times. Õ(2χin) is the upper limit on
the running time for a formula F with m(F )/n(F ) ≤ ki. Following are some
interesting properties of f(n, m) used in the analysis. The first property can be
observed from the Figure 6, and the second is derived in [6].
1) f(n, m) > f(n − 1, m) if m > 3.75n.
2) f(n, m) ≥ f(n1, m1) + f(n − n1, m − m1) if 0 ≤ n1 ≤ n, 0 ≤ m1 ≤ m.

3.1 Worst Case Branching

In this subsection we discuss the worst case branching situation for C-2-Sat6.
The following lemma shows that if we change Interval during branching it is
even better for our measure f . Therefore, the worst case occurs only when both
m/n and m1/n1 are in the same Interval. All proofs omitted in this section can
be found in the full version [11].

Lemma 1. Let f(n, m) and ai, bi, m1, n1 be defined as above. Then �f(n, m) =
f(n, m) − f(n1, m1) ≥ �fi(n, m) = fi(n, m) − fi(n1, m1) if ki < m/n ≤ ki+1.

A worst case branching occurs if the branching is maximally unbalanced. If
d(F ) = 2 in Step 5a, then F is a cycle and we are done after one branching.
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Interval i ki, ki+1 Worst case χi bi ai Time
0 0, 2 0 0 0 poly(n)

1 2, 2.4 τ (4a1 + 12b1, 4a1 + 12b1) 0 1/4 -1/2 2n/9.99

2 2.4, 2+2/3 τ (2a2 + 8b2, 4a2 + 14b2) 0.1 0.188 -0.352 2n/6.65

3 2+2/3, 3 τ (a3 + 6b3, 4a3 + 16b3) 0.150 0.155 -0.265 2n/4.94

4 3, 3.2 τ (2a5 + 10b5, 5a5 + 18b5) 0.202 0.090 -0.068 2n/4.54

5 3.2, 3.5 τ (a5 + 8b5, 5a5 + 20b5) 0.220 0.089 -0.067 2n/4.04

6 3.5, 3.75 τ (a6 + 8b6, 5a6 + 22b6) 0.247 0.076 -0.018 2n/3.75

7 3.75, 4 τ (a7 + 8b7, 5a7 + 24b7) 0.266 0.065 0.021 2n/3.54

8 4, 4+4/29 τ (a8 + 10b8, 6a8 + 26b8) 0.282 0.036 0.136 2n/3.47

9 4+4/29, 4+4/9 τ (a9 + 10b9, 6a9 + 28b9) 0.287 0.032 0.153 2n/3.36

10 4+4/9, 4+4/7 τ (a10 + 10b10, 6a10 + 30b10) 0.297 0.028 0.169 2n/3.33

11 4+4/7, 4.8 τ (a11 + 10b11, 6a11 + 32b11) 0.301 0.026 0.182 2n/3.25

12 4.8, 5 τ (a12 + 10b12, 6a12 + 34b12) 0.307 0.023 0.195 2n/3.21

13 5, 5+5/47 τ (a13 + 12b13, 7a13 + 36b13) 0.311 0.006 0.278 2n/3.20

14 5+5/47, 5+1/3 τ (a14 + 12b14, 7a14 + 38b14) 0.312 0.006 0.281 2n/3.18

15 5+1/3, 5.5 τ (a15 + 12b15, 7a15 + 40b15) 0.313 0.005 0.283 2n/3.17

16 5.5, 5+5/8 τ (a16 + 12b16, 7a16 + 42b16) 0.314 0.005 0.286 2n/3.16

17 5+5/8, 5+5/6 τ (a17 + 12b17, 7a17 + 44b17) 0.315 0.004 0.289 2n/3.15

18 5+5/6, 6 τ (a18 + 12b18, 7a18 + 46b18) 0.316 0.004 0.291 2n/3.15

Fig. 6. Parameter table for ain + bim (ki < m/n ≤ ki+1)

Thus, assume that we are in Step 5a with d(F ) ≥ 3, and after branching on
p we obtain the maximally reduced formulas F1 and F2. In both branches, we
eliminate at least p by assignment and NG(F )(x) by Reduce. It can be seen that
in the worst case, in one branch we have �n1 = d(x)+2, �m1 ≥ S(x)+6. Also
in the worst case the other branch will have �n2 = d(x) + 4, �m2 ≥ S(x) + 10.

The Step 5b of the Algorithm C-2-Sat6 is the more interesting case and
requires special attention. Let x ∈ F be the variable we branch on to get max-
imally reduced formulas F1 and F2. In the worst case, in one branch we have
�n1 = 1+ #degree 2 nodes in NG(F )(x) \ {x}, �m1 = 2 · (d(x) + #degree
2 nodes in NG(F )(x) \ {x}). Also in the worst case the other branch will have
�n2 = d(x)+1, �m2 ≥ 2
S(x)+3

2 � (Lemma 2). We use these bounds as our worst
cases throughout the paper. If m > 3.75n (when both ai and bi are positive) it
is obvious from the Property 1 of f that Step 5b is harder than Step 5a. For any
Interval i with m ≤ 3.75n one can easily verify with the given ai and bi that
Step 5a always has a worst case branching number less than 2. Also long chains
of degree 2 nodes don’t hurt when m ≤ 2.4n because 2bi + ai = 0, i ∈ {0, 1} and
long chains are beneficial if m > 2.4n because 2bi + ai > 0, i ∈ {2, 3, . . . , 18}.
So, from now on we will only be focusing on Step 5b.

Lemma 2. Let x ∈ F be the variable we branch on in Step 5b of the Algorithm
C-2-Sat6. In a worst case branching, i.e., the branching is maximally unbalanced,
we decrease m(F ) by at least 2
S(x)+3

2 � in at least one of the branchings.
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We also use the following lemma (stated without proof) from [6] that makes a
connection between the values of m(F )/n(F ) and worst case branchings.

Lemma 3. (Dahllöf et al. [6]) Let F be a non-empty formula with m(F )/n(F ) =
k ∈ Q, and define α(x) and β(x) such that

α(x) = d(x) + |{y ∈ NG(F )(x) : d(y) < k}|,
β(x) = 1 +

∑
{y∈NG(F )(x) : d(y)<k} 1/d(y).

There exists some variable x ∈ V ar(F ) such that d(x) ≥ k and α(x)/β(x) ≥ k.

3.2 Performance of C-2-Sat6

The proof will be divided according to the values of m(F )/n(F ). We branch on
some variable x ∈ F , eventually resulting in two maximally reduced formulas
F1 and F2. It is possible to end up with more than two maximally reduced
formulas, then the above applies to all connected components G(Fi) and by
Property 2 the total work is smaller. It is shown that in each Interval i the
worst case branching number is 2. The case where m ≤ 2n is a straight forward
consequence of applying Reduce.

We now handle denser cases. First the case where m ≤ 3n. As mentioned
earlier, this case is one of the our main sources of improvement from Dahllöf et
al. [6]. The benefits of this propagate through to the later cases.

Fig. 7. All possible neighborhood configurations with d(F ) = d(x) = 3

Lemma 4. Let F be a maximally reduced formula with m ≤ 3n and d(F ) = 3,
then C-2-Sat6(F, C, W ) runs in Õ(2χ4n) time.

Proof. We divide this case into worst cases depending on the number of degree
3 nodes (0,1,2 or 3) adjacent to x (Figure 7). ki to ki+1 captures the range
of m/n where each worst case can appear. For example, if no degree 3 nodes
are adjacent to one another, then the worst case is a bipartite graph with 2n/5
degree 3 nodes on one side and 3n/5 degree 2 nodes on the other side. This
leads to a value of (3 · 2/5 + 2 · 3/5) = 12/5 for k2. This lemma uses f1(n, m) to
f3(n, m) as measures.
Interval 1: m/n ∈ (2, 12/5], d(F ) = 3. In this case we focus on the number of
degree 3 variables n3(F ). We will decrease this number by 4 in one step (in the
worst case). Therefore, we actually use n3(F )/4 as a measure, i.e., b1 = 1/4 and
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a1 = −1/2. If F is maximally reduced then n3(F ) = m(F ) − 2n(F ). We can
show that �n3(F ) ≥ 4 along any branch by proving that �m ≥ 2�n + 4. Let
V and V1 ⊆ V be the set of variables in F and F1 respectively. The reduction in
m is

�m=
∑

v∈V −V1

d(v)+2|{clauses C′ in F : C′ has variables from both V \V1, V1}|.

Since there are no singleton variables in F , d(v) = 3, the first term is at least
2�n + 1, and since Reduce does not apply, the second term is at least 2.
Taking them together and also noting the fact that m(F ) is even, we have �m ≥
2�n + 4, so �n3(F ) ≥ 4. The same argument also works for F2. Furthermore,
χ2 = χ1 + (12/5 − 2)b1 = 0.1.
Interval 2: m/n ∈ (12/5, 2+2/3], d(F ) = 3. In this case x has at least one degree
3 node as its neighbor. There are two worst case recursions to be considered in
this case. Here we use the estimates for �n1, �m1, �n2, �m2 from Section 3.1.
Case 1: S(x) = 10. In this case x has exactly one degree 3 node as its neighbor.
The worst case branching is when the branching is maximally unbalanced, with
a branching number of τ(3a2 + 10b2, 4a2 + 14b2) < 2.
Case 2: S(x) = 11. In this case x has exactly two degree 3 nodes as its neighbors.
The worst case branching is when the branching is maximally unbalanced, with
a branching number of τ(2a2 + 8b2, 4a2 + 14b2) = 2. As given in Figure 6 we
have b2 ≈ 0.1884 and a2 ≈ −0.3520 and χ3 = χ2 + (8/3 − 12/5)b2 ≈ 0.1502.
Interval 3: m/n ∈ (2 + 2/3, 3], d(F ) = 3.
In this case x has three degree 3 nodes as its neighbors. The worst case branching
number is τ(a3 + 6b3, 4a3 + 16b3) = 2. As given in Figure 6 we have b3 ≈ 0.1557
and a3 ≈ −0.2650 and χ4 = χ3 + (3 − 8/3)b3 ≈ 0.2021.
As we see the worst case branching number is 2 and the worst case running time
for C-2-Sat6 with maximum degree 3 and m ≤ 3n is Õ(2χ4n). ❑

Depending on the range of m, we are allowed to have different values of �(F )
and the proof of the following lemma proceeds as in the previous lemma.

Lemma 5. For a maximally reduced formula F , the Algorithm C-2-Sat6
(F, C, W ) runs in time, Õ(2χ8n) if 3n < m ≤ 4n, Õ(2χ13n) if 4n < m ≤ 5n,
Õ(2χ19n) if 5n < m ≤ 6n.

Putting together Lemmas 4, 5, we get that C-2-Sat6(F, C, W ) has a worst case
running time of O(2n/3.15). The main Algorithm C-2-Sat (Figure 3) checks for
three different cases.

Theorem 1. Algorithm C-2-Sat(F, C, W ) runs in O(1.2461n) time.

Proof. The runtime bound T (n) of C-2-Sat(F, C, W ) is of the form:

T (n) ≤ max{T (n − 2) + T (n − 6), 1.2461n, T (n − 1) + T (n − 8),

where the first term is from Step 4, the second is from Step 5, and the last is from
Step 6. Note in Step 6 we branch on a variable with degree greater than 6. The
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recurrence T (n) = T (n−2)+T (n−6) solves to T (n) = Õ(τ(2, 6)n) ≈ O(1.2106n),
and the recurrence T (n) = T (n − 1) + T (n − 8) solves to T (n) = Õ(τ(1, 8)n) ≈
O(1.2320n). Therefore, the Algorithm C-2-Sat runs in O(1.2461n) time. ❑
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Abstract. We consider the problem of estimating an individual’s prod-
uct preferences for substitute goods or services. The preferences are
elicited by questionnaires that pose a few choice tasks to individuals
from the population (respondents). The simplest choice task is a pair-
wise comparison. To elicit a respondent’s ranking of n products com-
pletely Ω(n log n) pairwise comparisons are necessary. These are easily
too many in settings where the incentive for the respondent is not high
though he might be willing to answer a few questions truthfully. One
approach to cope with this complexity is to aggregate the answers of
several respondents in order to estimate an individual’s complete pref-
erence ranking. Here we describe such an aggregation mechanism based
on spectral clustering and prove its validity in statistical model of pop-
ulation and respondents.

1 Introduction

Preference elicitation is daily practice in market research. Its goal is to assess
a person’s preferences concerning a set of products or a distribution of prefer-
ences over a population. The products in the set are usually substitute goods or
services, i.e., products that serve the same purpose and can replace each other.

In applications like market share prediction estimating the distribution of the
population’s preferences is enough whereas in other applications like recommen-
dation systems, see for example [2, 3, 4], one needs to have a good estimate
of an individual’s preferences. Preferences can be captured by a value function
that assigns to every product a value. Every value function induces a (partial)
ranking of the products. The higher the value of a product, the higher is the
product’s position in the ranking. A ranking in general contains less information
than a value function. But the direct assessment of a person’s value function is
difficult and often leads to unreliable results. Ranking products is an easier task,
especially if the ranking is obtained from pairwise comparisons (or more general
choice tasks), which are popular in market research because they often simulate
� This reseach was partially funded by the Swiss National Science Foundation under
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real buying situations. Fortunately, in many applications a ranking of the prod-
ucts is enough. Sometimes it is even enough to determine the highest ranking
product. But often one is also interested in the ordering of the in-between prod-
ucts. For example the highest ranking product for a group of persons might be
costly to produce. If it turns out that there is a product which is much cheaper
to produce but is still high up in the ranking of most of the persons, then it
might be reasonable to produce the latter product.

Here we study the problem of eliciting product preferences from respondents
based on pairwise comparison questionnaires. Eliciting a respondent’s ranking
would require him to perform Θ(n log n) comparisons, where n is the number
of products. This might be too much if n exceeds a certain value. For example
in web based questionnaires respondents get worn out already after only very
few comparisons. If the number of comparisons they have to perform exceeds
their “tolerance threshold” they either cancel the whole interview or stop to do
the comparisons carefully. The tolerance threshold does not scale with n but
is usually a small constant. Therefore we want to ask only a constant number
of questions but increase the number of respondents for larger product sets.
According to their answers we segment the respondents to consumer types. In
the end we compute the rankings for the consumer types from the sparse input.
Ideally the latter ranking approximates the rankings of the respondents of this
consumer type well. Our contribution is a spectral segmentation algorithm that
we analyze in a reasonable statistical model of population and respondents, but
the formulation of the algorithm is independent of the model.

2 Ranking Algorithm

Given a set of products, we want persons (respondents) to rank the products
by pairwise comparisons. Note that other choice tasks, e.g., a one out of three
choice task, can be interpreted as multiple paired comparisons. In practice it
is infeasible to pose enough choice tasks to deduce the ranking. Our approach
is to aggregate the answers obtained from the respondents in order to obtain a
few rankings that are typical for the population of respondents and approximate
the individual’s rankings well. That is, we assume that the population can be
segmented into a small number of (consumer) types, i.e., persons that belong
to the same consumer type have similar preferences and thus rank the products
similarly whereas the rankings of two persons that belong to different types differ
substantially. At first we describe how we want to elicit preferences.

Elicitation procedure. Let X be a set of n products. We want to infer a
ranking of X for consumers who have to answer l different paired comparison
questions (one out of two choice tasks) chosen independently at random. We
refer to the consumers who have to perform the choice tasks as respondents. Let
m be the number of respondents. Note that here l is a constant independent of
n whereas m is dependent on n (m being the only nonconstant parameter, n is
also considered as a constant).
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Next we give an outline of our ranking algorithm. We refer to any L ⊆
(
X
2

)
of l

product pairs shortly as l-tuple. In the following it turns out to be convenient to
consider each product pair as an ordered pair (x, y) such that we can refer to x
as the first product and y as the second product of this pair. Our algorithm has
four phases. In the first phase we choose a random l-tuple L and then segment all
respondents that did all comparisons corresponding to the pairs in L into types
of similar preference. In the second phase we use the segmentation of this subset
of respondents to compute typical partial rankings of the products covered by
the l-tuple L for each segment. Then we extend the partial rankings to complete
rankings of all products for all the consumer types that we determined in the
second phase. Finally in the last phase, we also segment all the respondents into
their respective consumer types that have not been segmented before.

(1) Segmenting the respondents for a given l-tuple. Given an l-tuple
L the algorithm SegmentRespondents segments all respondents that did all
comparisons corresponding to the pairs in L into types of similar preference. The
algorithm has two parameters:

(1) A parameter 0 < α < 1 that imposes a lower bound of αm on the size of
the smallest consumer type that it can identify. Respondents from smaller
types will be scattered among other types.

(2) A symmetric (mL + l) × (mL + l)-matrix B = (bij) that contains the data
collected from the mL respondents, where mL is the number of respondents
that did all comparisons corresponding to the pairs in L. The column and
row indices 1, . . . , mL of B are indexed by the corresponding respondents
and the column and row indices mL + 1, . . . , mL + l are indexed by the l
ordered product pairs in L. For i ∈ {1, . . . , mL}, j ∈ {mL + 1, . . . , mL + l},
we set bji := bij := −1, if respondent i prefers in the (j − mL)’th product
comparison the second product over the first one, and bji := bij := 1, if he
prefers the first product over the second. All other entries bij are set to 0.

SegmentRespondents(B, α)
1 k := number of eigenvalues of B that are larger than some threshold

depending on m, n, and l.
2 PB := projector onto the eigenspace corresponding to the k most positive

eigenvalues and the k most negative eigenvalues of B.
3 P ′

B := restriction of PB onto its first mL columns and mL rows.
4 for r := 1 to mL do
5 for s := 1 to mL do

6 (cr)s :=

{

1 : (P ′
B)rs ≥ 0.49

((n
2)
l

)
/m

0 : otherwise
7 end for
8 if 0.99αm ≤ ‖cr‖2

((n
2)
l

)
do

9 mark r.
10 end if
11 end for
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12 I := {1, . . . , mL}, C := ∅
13 while {j ∈ I : j marked} �= ∅ do
14 unmark arbitrarily chosen i ∈ {j ∈ I : j marked}
15 C :=

{
j ∈ I : j marked,

〈ci,cj〉
‖ci‖ ‖cj‖ ≥ 0.97

}

16 C′ :=
{
j ∈ I : j marked,

〈ci,cj〉
‖ci‖ ‖cj‖ ≥ 0.8

}

17 if |C|
((n

2)
l

)
≥ 0.9αm and |C′|

((n
2)
l

)
≤ |C|

((n
2)
l

)
+ 0.02αm do

18 I := I \ C
19 C := C ∪ {C}
20 end if
21 end while
22 return C

The threshold in line 1 of the algorithm SegmentRespondents is used to
estimate the number of different consumer types using a carefully chosen thresh-
old that only depends on the known quantities m, n and l. In line 3 the projector
is restricted to its first mL rows and first mL columns, since this allows us to
identify the columns of P ′

B with respondents. From each column i of P ′
B we com-

pute a vector ci ∈ {0, 1}mL whose j’th entry is 1 if and only if the corresponding

entry bij in the matrix B is not less than 0.49
((n

2)
l

)
/m, see line 6. We also check

whether ci does not contain a too small number of 1 entries. The intuition is that
ci provides the characteristic vector of the “typical consumer type” which the
i’th respondent belongs to. This idea is exploited in the while-loop enclosed by
lines 13 and 21, where two respondents are grouped together if their correspond-
ing vectors ci and cj make a small angle, see line 15 and 16. The use of two sets
C and C′ is there to avoid taking a vector ci that is not the characteristic vector
of a a typical type in order to compute such a type. All vectors which are never
put into any set C will be discarded. We interpret the computed segments as
typical consumer types, i.e., each segment represents a different consumer type.

(2) Computing partial rankings for the consumer types. For each con-
sumer type computed by the algorithm SegmentRespondents we determine
a typical partial ranking of the products covered by the l-tuple L simply by ma-
jority vote. For every ordered product pair (x, y) ∈ L we say that a type prefers
x over y if more than half of the respondents of this type have stated that they
prefer x over y, otherwise we say the consumer type prefers y over x.

(3) Extending the partial rankings. For a consumer type to extend the
partial ranking of the products covered by L to all products in X , we proceed as
follows: we replace an arbitrary element j ∈ L by an element in X \

⋃
Y ∈L Y . Let

L′ be the resulting set of pairs. We run the algorithm SegmentRespondents
on L′ to segment all the respondents that did all comparisons corresponding
to the pairs in L′. The segments of respondents computed from L and from L′

will then be merged and the replacement process is repeated until the typical
consumer preferences for all

(
n
2

)
product pairs are determined.



62 J. Giesen, D. Mitsche, and E. Schuberth

(4) Classifying all respondents into the typical consumer types. Fi-
nally, all not yet classified respondents, i.e., those respondents corresponding
to an l-tuple not used to determine the typical consumer preferences, get also
classified. Assume that such a respondent did pairwise product comparisons for
pairs in the l-tuple L∗. Such a respondent is classified to be of that consumer
type whose ranking restricted to L∗ best matches the answers he provided (ties
broken arbitrarily).

Let us summarize all parameters of our ranking algorithm in the following
table.

n number of products
m number of respondents (dependent on n)
l number of comparisons performed by each respondent

(independent of n)
α parameter in (0, 1) that poses a lower bound of αm on the size

of the smallest consumer type that it can be identified.

3 Statistical Model

The ranking algorithm that we presented in the last section is formulated inde-
pendent of a model of population and respondents. But in order to theoretically
analyze any procedure that computes typical rankings from the input data a
model of the population and a model of the respondents is necessary. Providing
such a model gives rise to a reconstruction problem, namely, given data obeying
the model reconstruct the model parameters. Here we want to turn the prefer-
ence elicitation problem into a reconstruction problem by providing a reasonable
model.

Population model. We assume that the population can be partitioned into k
typical consumer types, or short types. Let αi ∈ (0, 1) be the fraction of the i’th
type in the whole population. For each type there is a ranking σi, i = 1, . . . , k,
i.e., a permutation, of the n products. It will become convenient to encode a
ranking as a vector u with

(
n
2

)
entries in {±1}, one entry for each product pair

(x, y). In the vector the entry at position (x, y) is 1 if x is preferred over y
and −1 otherwise. We will refer to the vector u also simply as ranking. As a
measure of separation of two permutations we use the Hamming distance which
is the number of inverted pairs, i.e., the number of pairs (x, y), x, y ∈ X , where
x ≺ y in the one permutation and y ≺ x in the other permutation. Here x ≺ y
means that y is ranked higher than x. Obviously the maximum separation of
two permutations is

(
n
2

)
.

Respondent model. We assume that the set of respondents faithfully repre-
sents the population, i.e., αi is also (roughly) the fraction of respondents of type
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i among all respondents. Given a respondent let σ be the ranking that corre-
sponds to the type of this respondent. For any comparison of products x and y,
with x ≺ y according to σ, we assume that the respondent states his preference
of y over x with probability p > 1/2. In our model each comparison is a random
experiment with success probability p, where success means that a respondent
answers according to his type. Note that this allows the respondents’ answers
to violate transitivity, i.e., we still ask comparisons whose outcome could have
been derived already from transitivity. From a practical perspective this seems
meaningful since stated preferences are often not transitive and the amount of
“non-transitivity” is interesting extra information that could be exploited oth-
erwise.

Let us summarize all parameters of our models in the following table.

k number of types
p probability for a respondent not to deviate from its type when

performing a comparison
δ(i, j) separation of typical ranking σi and σj

αi fraction of respondents of type i among all respondents
mi αim, i.e., number of respondents of the i’th type

This model allows to analyze procedures that compute typical rankings from
the input data. It leads to the ranking reconstruction problem.

Ranking reconstruction problem. Given the data obtained by our elicita-
tion procedure (see previous section) from a population that follows the model
described above, the ranking reconstruction problem asks to reconstruct the
number k of consumer types, their corresponding typical rankings and to asso-
ciate every (many) respondent(s) with his (their) correct type.

4 Analysis

The reconstruction problem becomes harder if the typical rankings are not well
separated. To make this more precise we introduce the following notions of well-
separation.

Well-separation. For 0 < ε < 1 we say that the typical consumer types are
ε-well-separated if for any two different consumer type rankings ui and uj, we
have

(1 − ε)
(

n

2

)

≤ 2 δ(ui, uj) ≤ (1 + ε)
(

n

2

)

.

Given a ranking (vector) u and an l-tuple L, we denote the projection of u onto
L by πL(u), i.e., πL(u) is a vector in {±1}l. We say that an l-tuple L is ε-well-
separating, if for any two different consumer types with associated rankings ui

and uj we have
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|〈πL(ui), πL(uj)〉| ≤ 3εl.

In this case, we also say that consumer types i and j are ε-well-separated by L.
Even for well-separated typical rankings it will not always be possible to solve

the ranking reconstruction problem, especially if the number of respondents m
is too small compared to the number of products n. In the following we outline
a proof1 that with high probability our ranking algorithm solves the ranking
reconstruction problem approximately if:

(1) All parameters besides m are considered constant and the number m of
respondents is large enough as some function of n.

(2) The number of l of comparisons depends on α, p and ε, i.e., it is larger
when α (fraction of smallest type) becomes smaller, or when the non-error
probability p gets closer to 1/2, or when ε (well-separation of the typical
types) becomes smaller. Also l is assumed to much smaller than

(
n
2

)
.

We start by showing that a randomly chosen l-tuple is well-separating with
high probability.

Lemma 1. Suppose that the typical consumer type rankings are ε-well-separated
and suppose that l = l(p, α, ε) 

(
n
2

)
is a large constant but independent of n.

Then with probability at least 1 − e−100, a randomly chosen l-tuple is ε-well-
separating.

Unless stated differently we will assume in the following that L is an ε-well-
separating l-tuple. For some l-tuple L let mi

L denote the number of consumers
of type i ∈ {1, . . . , k} that compared exactly the l product pairs in L.

In order to estimate the number of consumer types k in line 1 of the algorithm
SegmentRespondents we want to compute the largest eigenvalues in absolute
value of B (see Section 2 for the definition of B). We want to exploit the block
structure of B, which can be written as

B =
(

0 A
AT 0

)

,

where A is an mL × l matrix whose rows are indexed by respondents and whose
columns are indexed by product pairs. We are not going to compute the eigenval-
ues of B directly but use a perturbation argument to estimate them. Therefore
we compare B to B̂, which we define as the matrix of expected values for the
entries in B, i.e., b̂ij = E[bij ]. In particular that means that for i ∈ {1, . . . , mL}
and j ∈ {mL+1, . . . , mL+l} we have b̂ji = b̂ij = 2p−1, if respondent i prefers in
the j’th product comparison the first product over the second with probability p,
b̂ji = b̂ij = 1−2p, if he prefers the second product over the first with probability
p, and b̂ij = 0 otherwise. Note that B̂ has a similar form as B, namely,

B̂ =
(

0 Â

ÂT 0

)

.

1 See the full version of this paper for the actual proofs.
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The eigenvalues of B̂ can be computed from their squared values, i.e., from
the eigenvalues of B̂2. The matrix B̂2 has the form

B̂2 =
(

ÂÂT 0
0 ÂT Â

)

,

Thus the eigenvalues of B̂2 can be computed as the eigenvalues of the mL × mL

matrix ÂÂT and the l×l matrix ÂT Â, respectively. Furthermore, ÂÂT and ÂT Â
have the same non-zero eigenvalues. The eigenvalues of ÂT Â can be estimated
as follows.

Lemma 2. For i = 1, . . . , k it holds that

λi(ÂÂT )
((

n
2

)

l

)

≥ 9lm(2p − 1)2α/10,

with probability at least 1 − e−cm for some c > 0, if ε ≤ (2p − 1)2α3/90000.

Corollary 1. The matrix B̂ has rank 2k with probability at least 1 − e−cm.

Observe now that if λ or −λ is a non-zero eigenvalue of B̂, then λ2 is an eigenvalue
of B̂2. Hence the absolute value of any of the 2k non-zero eigenvalues of B̂

is at least
√

lm(2p − 1)2α0.9/
((n

2)
l

)
with probability at least 1 − e−cm. Now

we can provide a good value for the threshold that we use in line 1 of the
algorithm SegmentRespondents to estimate the number of consumer types k
(the constants of this theorem are not needed elsewhere). This shows that with
high probability we can reconstruct the number of different consumer types
correctly.

Theorem 1. Let L be a randomly chosen l-tuple for l = l(p, α, ε) sufficiently
large but independent of n. With probability at least 1 − 2e−100, B has exactly k
positive eigenvalues and exactly k negative eigenvalues whose absolute value is
larger than

10

√

m/

((
n
2

)

l

)

.

In the following let k denote the number of eigenvalues of B that are larger

than 10
√

m/
((n

2)
l

)
. We will show next that we do not just know bounds for the

eigenvalues of B that hold with high probability, but we can also say something
about the structure of the projectors onto the corresponding eigenspaces. Later
we will use these projectors to cluster the respondents. Denote in the following
by P

(k)
A the projector onto the space spanned by eigenvectors corresponding to

the k largest eigenvalues of the symmetric matrix A. Let P ′
B be the restriction

of P
(k)
B + (I − P

(mL+l−k)
B ) onto its first mL rows and first mL columns, i.e., P ′

B

is an mL × mL matrix. In the full version of this paper we introduce another
mL×mL matrix C to which we compare P ′

B . The matrix C is block diagonal and
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we can characterize P k
C explicitly: we have (PC)(k)

rs = 1/mi
L, if both respondents

r and s belong to type i (and compare all the product pairs in the l-tuple L),
and (PC)(k)

rs = 0 otherwise.

Lemma 3. With the probability at least 1 − 2e−100, we have

‖P ′
B − P

(k)
C ‖2 < α2/1000.

From this lemma we get the following theorem.

Theorem 2. With probability at least 1−3e−100, for a randomly chosen l-tuple
L, for every consumer type i, the algorithm SegmentRespondents misclassi-
fies at most 3% of the mi

L respondents.

The theorem tells us that with high probability for all consumer types at most a
3%-fraction of the respondents gets misclassified. Conditioned under this event,
we can now easily, by majority vote, extract the rankings of the k consumer types:
for each reconstructed consumer type and for each product pair (x, y) ∈ L we
say that the consumer type prefers x over y if more than half of the respondents
of this type have stated that they prefer x over y, otherwise we say the consumer
type prefers y over x.

Lemma 4. With probability at least 1 − 4e−100, for every consumer type i and
its typical ranking ui, πL(ui) is reconstructed perfectly.

Next we use that if L is well-separating and we exchange one pair in L with a
pair from X \

⋃
Y ∈L Y to get an l-tuple L′, then also L′ is almost well-separating

and basically everything we proved for L remains valid for L′. That is, with
high probability for both L and L′, respectively, exactly the same number k of
typical consumer types will be computed whose rankings all agree on all the l−1
product comparisons in L ∩ L′. Thus the segments computed for L and L′ can
be easily merged.

Theorem 3. Suppose that l = l(α, p, ε) is a sufficiently large constant (but in-
dependent of n). Then, with probability at least 1 − 5e−100, all consumer type
rankings can be reconstructed perfectly.

Finally, we show that also most of the respondents get classified correctly.

Theorem 4. Suppose that l = l(p, α, ε) is a sufficiently large constant (but in-
dependent of n). Then with probability at least 1 − 6e−100, for each consumer
type i, i = 1, . . . , k, at most a e−97-fraction of the respondents of that type is
misclassified.

5 Conclusion

We have studied the problem to elicit product preferences of a population, where
the preferences are represented as a ranking of the products. During elicitation
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we ask many respondents to perform a few pairwise comparisons. We provide an
algorithm to process the elicited data and introduce models of population and
respondents and analyze our algorithm in their context. The following theorem
summarizes the analysis of our collaborative ranking algorithm.

Theorem 5. For any ξ > 0 and any γ > 0, we can choose l = l(p, α, ε) to be
a sufficiently large constant (but independent of n) such that for our model of
population and respondents and a sufficiently large number of respondents we
can with probability 1 − ξ correctly

(1) infer the number k of different consumer types, and
(2) segment a (1 − γ)-fraction of the respondents into correct types, and
(3) reconstruct the k typical consumer rankings.

Acknowledgment. We thank Michael Krivelevich and Philipp Zumstein for
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in an earlier version of this paper.
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Abstract. A rectangular drawing is a plane drawing in which every face
is a rectangle. In this paper we give a simple encoding scheme for rectan-
gular drawings. Given a rectangular drawing R with maximum degree 3,
our scheme encodes R with 5

3m+ o(n) bits for each n-vertex rectangular
drawing R, where m is the number of edges of R, and supports a rich
set of queries, including adjacency and degree queries on the faces, in
constant time.

1 Introduction

We wish to encode a given graph G into 0-1 binary string S satisfying the
following three conditions.
(1) S can be decoded to reconstruct G.
(2) The length of S is as short as possible.
(3) A variety of queries for G can be computed from S efficiently.

For ordered trees, the following string ST of length 2(n − 1) bits has been
known for a long time. Given an ordered tree T we traverse T starting at the
root with depth first manner. If we go down an edge then we code it with ‘0’,
and if we go up an edge then we code it with ‘1’. Thus, any n-vertex ordered
tree T has a string ST of length 2(n − 1) bits, Then, (1) ST can be decoded to
reconstruct T , and (2) the length of ST is 2(n − 1) bits. However it seems to
be impossible to compute efficiently, say in O(1) time, whether two designated
vertices of T are adjacent or not. However, by appending a string of length o(n)
bits to ST , one can compute the adjacency in O(1) time [8,9].

On the other hand, the number of ordered trees with n vertices is known as
the Catalan number Cn−1, and it is defined as Cn = 1

(n+1)
(2n)!
n!n! in [13, p.145].

Since each ordered tree with n vertices must correspond to a distinct string, the
average length of ST is at least log Cn−1 = 2n − o(n) bits for ST [2,8,9].

Thus, the length of ST above is asymptotically optimal.
Also, for plane graphs many encoding schemes are known [1,2,7,8,9,12,14].

Among them [2] gives a scheme to encode a maximal planar graph into a string
of length 2m + n + o(n) bits with supporting adjacency and degree queries in
O(1) time, where m is the number of edges.

In this paper we design an encoding scheme for rectangular drawings. A rec-
tangular drawing is a plane drawing in which every face is a rectangle. A based

M.-Y. Kao and X.-Y. Li (Eds.): AAIM 2007, LNCS 4508, pp. 68–81, 2007.
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Fig. 1. Based rectangular drawings with exactly three inner faces
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Fig. 2. The encoding scheme

rectangular drawing is a rectangular drawing with one designated base line seg-
ment on the outer face. For instance, there are six based rectangular drawings
with three faces, as shown in Fig. 1. Each base line segment is depicted by a
thick line. Such based rectangular drawings play an important role in many ap-
plications, including VLSI floorplanning [5]. Since the size of modern VLSI is
extremely huge, a compact representation for VLSI is needed. Note that, if a
graph has a vertex with degree five or more, then the graph has no rectangular
drawing. Also, if a graph has a degree 4 vertex v, we can replace v by two degree
3 vertices connected by an edge of zero length(although it introduces more ver-
tices). Also note that the degree of each of the four corner vertices on the outer
face is always two. We assume there are no other vertices with degree two, since
they are redundant. Thus we can assume that the degree of every inner vertex
is three, as in most literatures, [5,10,15]. This convention simplifies discussions.

The main result of the paper is as follows. Given a based rectangular drawing
R with n vertices and m edges, we give a scheme to encode R into a string S
satisfying the following three conditions (1)–(3).
(1) S can be decoded to reconstruct R,
(2) the length of S is 5

3m + o(n), and
(3) a variety of queries on the faces for R can be computed from S in O(1) time.

Our strategy is as follows.
Given a based rectangular drawing R, we first compute the planar dual DR

of R (See Fig. 2(b)). Note that each edge of DR corresponds to either vertical or
horizontal adjacency between a pair of adjacent faces. Since every inner vertex
of R has degree three, every inner face of DR is a triangle.

If we use an encoding scheme for maximal planar graphs in [2], we can encode
DR into a string of length 2m+ n + o(n) = 7

3m + o(n) bits. However we lose the
information that each edge corresponds to either vertical or horizontal adjacency,
so we cannot reconstruct R.

In our strategy we classify the edges of D into the following two types. (1)
The edges corresponding to vertical adjacency of faces. (These are depicted by
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thick lines in Fig. 2(c).) (2) The edges corresponding to horizontal adjacency of
faces. (These are depicted by thin lines in Fig. 2(c).) Then we choose a spanning
tree T of the graph induced by the edges in (1), and we further classify the edges
of (1) into either (1a) edges included in T or (1b) others (See Fig. 2(d)). Finally
we only store the edges of (1a) and (2) into a string SR of length 5

3m bits, and
we show that SR is enough to reconstruct R. Then we also design a string SA

of length o(n) bits to compute a variety of queries on the faces in O(1) time.
Finally let S = SR + SA.

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 gives our encoding scheme for a given based rectangular drawing R
into a string SR. Section 4 explains for SA and how to support some basic queries
efficiently. Section 5 explains how to support an adjacency query efficiently.
Section 6 treats a degree query. Section 7 shows how to reconstruct R from
S. Finally Section 8 is a conclusion.

2 Preliminaries

In this section we give some definitions.
Let G be a connected graph. A tree is a connected graph with no cycle. A

rooted tree is a tree with one vertex r chosen as its root. An ordered tree is a
rooted tree with fixed orderings for siblings.

A drawing of a graph is plane if it has no two edges intersect geometrically
except at a vertex to which they are both incident. A plane drawing divides
the plane into connected regions called faces. The unbounded face is called the
outer face, and other faces are called inner faces. We regard the contour of a
face as the clockwise cycle formed by the vertices and edges on the boundary of
the face. A graph is planar if it has a plane drawing. A plane graph is a planar
graph with a fixed planar drawing. Let n be the number of vertices of a graph,
m be the number of edges, and f be the number of faces. Since every face is
enclosed by at least three edges and every edge is on the contours of exactly two
faces, we have 3f ≤ 2m for any plane graph. The inequality and Euler’s formula
n − m + f = 2 means that m ≤ 3n − 6 holds for any plane graph.

A rectangular drawing is a plane drawing in which every face (including the
outer face) is a rectangle. See some examples in Fig. 1. Note that a graph with
maximum degree five or more does not have any rectangular drawing. A based
rectangular drawing is a rectangular drawing with one designated base line seg-
ment on the contour of the outer face. The designated base line segment is called
the base, and we always draw the base as the lowermost horizontal line segment
of the drawing. For examples, all based rectangular drawings with three inner
faces are shown in Fig. 1, in which each base is depicted by a thick line.

Two faces F1 and F2 are ns-adjacent (north-south adjacent) if they share a
horizontal line segment on their contours. Two faces F1 and F2 are ew-adjacent
(east-west adjacent) if they share a vertical line segment on their contours. If two
based rectangular drawings P1 and P2 have a one-to-one correspondence between
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faces preserving ns- and ew-adjacency, and in which each base corresponding to
the other, then we say that P1 and P2 are isomorphic.

In rectangular drawing, vertex v with degree three is w-missing (west missing)
if v has edges to top, bottom, and right. Similarly we define e-missing, n-missing,
and s-missing. Note that every vertex with degree three is either w-missing, e-
missing, n-missing, or s-missing.

3 The String of a Rectangular Drawing

In this section, given a based rectangular drawing R, we design a string SR for
R such that (1) SR can be decoded to reconstruct R, and (2) the length of SR is
5
3m+ 22

3 bits, where m is the number of edges of R. In the next section, by using
an additional string SA of length o(n) bits, we explain how to compute some
queries for R in O(1) time. The details of SA are shown in the next section.

As we mentioned in Section 1, the idea of our encoding scheme is shown in
Fig. 2.

We now need some definitions.
Given a based rectangular drawing R, by rotating either 0, 90, 180, or 270

degrees in clockwise, respectively, one can have four based rectangular draw-
ings. Without loss of generality, we can assume that R is the based rectangular
drawing with the maximum number of s-missing vertices among the four rotated
drawings. Because, otherwise, we can first rotate R so that it has the maximum
number of s-missing vertices, and store the amount of rotation in two bits, and
preprocess each query with this rotation information.

We have the following lemma.

Lemma 1. Let nS be the number of s-missing vertices. Then, nS ≥ n−4
4 holds,

where n is the number of vertices of R.

Proof. The four corners of the outer rectangle of R have degree two, and all other
vertices have degree three. Each vertex with degree three is either w-, e-, n-, or
s-missing. Since nS is the largest, nS ≥ n−4

4 holds. ��
Given a based rectangular drawing R, we compute the planar dual DR of R
as follows. First, by extending the uppermost and lowermost horizontal line
segments, we divide the outer face of R into four faces, those are west, east,
north, and south faces. Then we put a vertex in each face of R, and we connect
two vertices by an edge if the corresponding two faces are adjacent. See Fig. 2(b).
Note that each of the divided four outer faces is also replaced with a vertex.

Then, we classify the edges of DR into two subsets of edges as follows. Note
that each edge of DR corresponds to some adjacency of two faces of R, and
it is either ns-adjacency or ew-adjacency. Let ENS be the set of edges of DR

corresponding to some ns-adjacency, and EEW be the set of edges corresponding
to some ew-adjacency. (See Fig. 2(c).) Let DNS be the subgraph of DR induced
by the edges in ENS , and DEW be the subgraph of DR induced by the edges in
EEW .



72 K. Yamanaka and S.-I. Nakano
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Fig. 3. The string SR = S1 + S2 for a rectangular drawing in Fig. 2

Next, we further classify the edges in ENS into two subsets of edges as follows.
For each face f of R let p(f) be the westmost face among the faces locating on
the north side of f . We call p(f) the parent face of f . Especially for the (outer)
north face fN , p(fN ) is not defined. Let ET

NS be the set of edges corresponding
to the adjacency between some face f and p(f). Now ET

NS induces a spanning
tree of DR. Let TNS be the spanning tree. An example is shown in Fig. 2(d), in
which TNS is drawn by thick lines, while the edges in ENS − ET

NS is drawn by
dashed lines.

We are going to construct the string S1 from TNS, then the string S2 from
TNS and DEW , then finally construct the string SR = S1 + S2 for R.

First we construct S1 as follows. (It is identical string for an ordered tree
mentioned in Section 1.) Starting the vertex corresponding to the north face, we
traverse TNS with depth first manner. If we go down an edge then we code it
with ‘(’, and if we go up an edge then we code it with ‘)’. Let S

′

1 be the resulting
string. Let S1 = (S

′

1), that is the string obtained from S
′

1 by adding ‘(’ at the
head and ‘)’ at the end. (Actually, we encode each ‘(’ to ‘0’ and each ‘)’ to ‘1’,
respectively.) Fig. 3 shows a string S1 of Fig. 2.

The i-th ‘(’ and its matching parenthesis ‘)’ in S1 correspond to the i-th
vertex of TNS in preorder. (See Figs. 2 and 3.)

Next we construct S2 as follows.
We first construct S

′

2 from S1 as follows. We replace each i-th ‘(’ with |west(i)|
of consecutive ‘]’s, and its matching parenthesis ‘)’ with |east(i)| of consecutive
‘[’s, where west(i) is the set of faces locating on the west side of fi corresponding
to the i-th vertex of TNS in preorder, and east(i) is the set of faces locating on the
east side of fi. For example, in Figs. 2, west(5) = {f2} and east(5) = {f6, f7}.
Since west(1) = west(2) = west(3) = φ and east(1) = east(f +3) = east(3) = φ
hold, they have no corresponding string, where f is the number of faces of R. Note
that every inner face fi of R satisfies |west(i)| ≥ 1 and |east(i)| ≥ 1. The |west(i)|
of consecutive ‘]’s in S

′

2 correspond to the |west(i)| of ew-adjacencies between
faces in west(i) and fi. Also the k-th ‘]’ among the |west(i)| of consecutive
‘]’s corresponds to the k-th ew-adjacency of fi to west from north. Similarly,
the |east(i)| of consecutive ‘[’s correspond to the |east(i)| of ew-adjacencies
between faces in east(i) and fi. Also the k-th ‘[’ among |east(i)| of consecutive
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‘[’s corresponds to the k-th ew-adjacency of fi to east from south. Note that,
since TNS is a tree, S

′

2 has a nested structure. (We will explain a reason in
Section 5.)

Next we construct S2 from S
′

2 as follows. We replace each consecutive |west(i)|
of ‘]’s with one ‘1’ followed by (|west(i)| − 1) of consecutive ‘0’s. Similarly, we
replace each consecutive |east(i)| of ‘[’s with one ‘1’ followed by (|east(i)| −
1) of consecutive ‘0’s. An example is shown in Fig. 3. Note that each ‘1’ in
S2 corresponds to the border of some west(i) or east(i). Also note that no
information of edges in ENS − ET

NS is stored.
Now we estimate the length of SR = S1 +S2. Let n be the number of vertices

of R, m be the number of edges of R, and f be the number of faces of R. Then
DR has m+4 edges, because we extend the uppermost and lowermost horizontal
line segments of R. Since the four corners on the outer face of R have degree
two, and all other vertices have degree three, the following equation holds.

2m = 3(n − 4) + 2 · 4 (1)
First we estimate the length of S1. The string S

′

1 stores the pair of ‘(’ and ‘)’
for each edge of TNS , then by adding two more bits we have S1. Thus |S1| =
2|ET

NS | + 2.
Next we estimate the length of S2. Since the pair of ‘[’ and ‘]’ is stored for each

edge corresponding to some ew-adjacency, |S2| = 2|EEW | = 2((m + 4) − |ENS |)
holds.

Therefore,

|SR| = |S1| + |S2|
= (2|ET

NS | + 2) + (2m + 8 − 2|ENS |) = 2m + 10 − 2|ENS − ET
NS |

We have the following lemma.

Lemma 2. |ENS −ET
NS | = nS +2, where nS is the number of s-missing vertices

of R.

Proof. We show that there is a one-to-one mapping between s-missing vertices
and edges in ENS −ET

NS. Assume that face fu is located on the north side of face
fd, and fu �= p(fd) holds. Let u and d be the vertices corresponding to fu and
fd. Then we can assign the lower-left corner x of the face fu, which is s-missing,
to the edge (u, d). Since the definition of ET

NS implies that each vertex has at
most one ‘downward’ edge in ENS − ET

NS , any duplication does not happen in
the assignment above. Since by the division of the outer face we have created
two of s-missing vertices to R, the claim holds. ��
By Lemma 2,

|SR| = 2m + 10 − 2|ENS − ET
NS | = 2m + 10 − 2(nS + 2)

By Lemma 1,

|SR| ≤ 2m + 10 − 2
(

n − 4
4

+ 2
)

= 2m − n

2
+ 8

By equation (1), |SR| ≤ 5
3m + 22

3 holds.
We will show that SR can be decoded to reconstruct R in Section 7.
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4 The Basic Queries

In this section we survey some basic queries for strings.
Let S[i, j] be the substring of S from position i to position j. We denote

S[i, i] = S[i].
Let S1 be the string in Section 3 consisting of ‘(’ and ‘)’. Operation rank(S1, i,

() computes the number of ‘(’s up to and including the position i in S1. Opera-
tion select(S1, k, () computes the position of the k-th ‘(’ in S1. Note that, if j =
select(S1, k, (), then k = rank(S1, j, () holds. Similaly we define rank(S1, i, ))
and select(S1, k, )). For example, if S1 = ((())(()(()))()()), as shown in Fig.
3, then rank(S1, 6, () = 4 and select(S1, 3, )) = 8.

Next, we define the balanced parentheses. The string Sa = () is balanced.
Assume that two strings Sb and Sc are balanced, then two strings Sd = SbSc and
Se = (Sb) are also balanced. In a balanced string there is a natural one-to-one
correspondence between ‘(’ and ‘)’. If S1[i] = ‘(’ corresponds to S1[j] = ‘)’, we
say that S1[i] matches S1[j], and we write match(S1, i) = j and match(S1, j) = i.
If match(S1, i) = j, then match(S1, j) = i holds.

Next we define enclose(S1, i) in the following two cases. If S1[i] = ‘(’, then,
enclose(S1, i) is the position of ‘(’ which immediately encloses the pair i and
match(S1, i). Otherwise, S1[i] = ‘)’, then enclose(S1, i) is the position of ‘(’
which immediately encloses the pair match(S1, i) and i. For example,
enclose(S1, 9) = 6 in Fig. 3.

Next we define wrapped(S1, i) in the following two cases. If S1[i] = ‘(’, then
let c be the number of positions k in S1 such that enclose(S1, k) = i. Otherwise,
S1[i] = ‘)’, then let c be the number of position k in S1 such that enclose(S1, k) =
j, where j = match(S1, i). In both cases we define wrapped(S1, i) = c.

The following lemma is known.

Lemma 3. ([1,3,6,8,9])
Given a balanced string S1 of length 2n, using an additional string SA

1 of o(n)
bits, one can compute the following operations in O(1) time for each. One can
construct SA

1 in O(n) time.
(1) rank(S1, i, () and rank(S1, i, )) [3,6].
(2) select(S1, i, () and select(S1, i, )) [3].
(3) match(S1, i) [8,9].
(4) enclose(S1, i) [8,9].
(5) wrapped(S1, i) [1].

Each pair of ‘(’ and ‘)’ in S1 corresponds to a vertex of DR. The i-th vertex of
TNS in preorder corresponds to the i-th ‘(’ and its matching ‘)’.

Let S2 be the string in Section 3. Then S2 has a nested structure. Similarly,
we can define operations rank, select, match, enclose, and wrapped for S2.

Also we add some basic operations for S2.
By definition, S2 can be divided into (|S1|− 6) substrings. (See Fig 3.) Let Li

be the substring in S2 corresponding to west(i). We can find Li in S2 as follows.
Assume that select(S1, i, () = a. Then, Li = S2[select(S2, a−4, 1), select(S2, a−
3, 1)) − 1] holds. For example, in Fig. 3, if i = 5, then a = select(S1, 5, () = 7.
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Since the first four characters in S1 have no corresponding substring in S2 (See
Fig. 3), L5 begin at the position of (7−4)-th ‘1’ in S2. Thus, L5 begin at position
select(S2, 7 − 4, 1) = 4. Also, L5 ends at position select(S2, 7 − 4 + 1, 1) − 1,
because the next substring begin at position select(S2, 7− 4+1, 1) in S2. Hence
L5 = S2[4, 4]. Note that each Li in S2 start with ‘1’, and each ‘1’ is a starting
position for some Li. Li corresponds to the |west(i)| = |Li| of ew-adjacency
between each face in west(i) and the fi corresponding to the i-th vertex. Also
the k-th ‘]’ in Li corresponds to the k-th ew-adjacency of fi to west from north.
In particular, the pair of the first ‘]’, at position p1 = select(S2, a−4, 1), and its
matching ‘[’, at position p2 = match(S2, p1), corresponds to the ew-adjacency
between face fi and face fWN , where fWN is the northmost face among the faces
locating on the west side of fi. Let vj be the vertex corresponding to face fWN .
Then, we write fWN (i) = j. Thus, fWN is the northmost (= N) face among the
faces locating on the west (= W ) side of fi. Then,

fWN (i) = rank(S1, match(S1, rank(S2, p2, 1) + 4), ()

holds. Similarly, let fWS be the southmost face among the faces locating on the
west side of fi. Then,

fWS(i) = rank(S1, match(S1, rank(S2, match(S2, select(S2, a − 3, 1) − 1), 1) + 4), ()

holds.
Similarly, let Ri be the substring in S2 corresponding to east(i). We can find

Ri in S2 as follows. Assume select(S1, i, () = a and match(S1, a) = b. Then
Ri = S2[select(S2, b − 4, 1), select(S2, b − 3, 1) − 1] holds. Ri corresponds to
the |east(i)| = |Ri| of ew-adjacency between each face in east(i) and the fi

corresponding to the i-th vertex. Also the k-th ‘[’ in Ri corresponds to the k-th
ew-adjacency of fi to east from south. Let fEN and fES be the northmost and
southmost faces among the faces locating on the east side of fi, respectively.
Then similarly,

fEN (i) = rank(S1, rank(S2, match(S2, select(S2, b − 3, 1) − 1), 1) + 4, (),

and

fES(i) = rank(S1, rank(S2, match(S2, select(S2, b − 4, 1)), 1) + 4, ()

hold.

Lemma 4. Given a balanced string SR of length 2n, using an additional stirng
SA of o(n) bits, one can compute Li, Ri, fWN (i), fWS(i), fEN(i), and fES(i)
in O(1) time. One can construct SA in O(n) time.

Proof. It is trivial by Lemma 3. ��
Let v be a lower-left corner of face fi corresponding to the i-th vertex. Then, v is
either s-missing or w-missing. If v is s-missing, we write s-miss(i, WS) = True.
Otherwise, s-miss(i, WS) = False. We can compute s-miss(i, WS) as follows.
If fES(fWS(i)) = i, then s-miss(i, WS) = True, otherwise, s-miss(i, WS) =
False. We have the following lemma.
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Fig. 4. Illustration for how to compute the four adjacency queries

Lemma 5. For each four corner of a face, one can compute which direction is
missing in O(1) time.

5 The Adjacency Query

In this section we explain how we can compute the adjacency query in O(1)
time. We can compute such query with a help of the additional string SA of o(n)
bits.

Given two faces fi and fj of based rectangular drawing R, we consider the
following four adjacency queries.
(wa) fj ∈ west(i): Is face fj located on the west side of face fi? (See Fig. 4(a).)
(ea) fj ∈ east(i): Is face fj located on the east side of face fi? (See Fig. 4(b).)
(na) fj ∈ north(i): Is face fj located on the north side of face fi? (See Fig. 4(c).)
(sa) fj ∈ south(i): Is face fj located on the south side of face fi? (See Fig. 4(d).)

Let Li be the substring in S2 corresponding to west(i), and Ri be the substring
in S2 corresponding to east(i). Let DR be the planar dual of R.

We first consider query (wa).
We can observe that fj ∈ west(i) if and only if some ‘[’ in Rj matches some

‘]’ in Li. Such a pair can be efficiently computed as follows.
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Assume that Rj = S2[a, b] and Li = S2[c, d]. Without loss of generality one
can assume that a < b < c < d. We have the following three cases.
Case 1: match(S2, d) > b.

None ‘]’ in Li matches any ‘[’ in Rj . Hence fj /∈ west(i).
Case 2: a ≤ match(S2, d) ≤ b.

In this case S2[d] matches some ‘[’ in Rj . Hence fj ∈ west(i).
Case 3: match(S2, d) < a.

We have two subcases.
Case 3(a): match(S2, a) < c.

None ‘[’ in Rj matches any ‘]’ in Li. Thus fj /∈ west(i).
Case 3(b): c ≤ match(S2, a) < d.

In this case S2[a] matches some ‘]’ in Li. Hence fj ∈ west(i).
Therefore, we can compute query (wa) in O(1) time.
The computation for query (ea) is symmetric to query (wa). So we omit the

detail for (ea).

Next we consider for (na). If fj is the parent face of fi, fj ∈ north(i). Otherwise,
we have to compute whether fj is located on the north side of fi by the edge
in ENS − ET

NS . Note that no information for the edges in ENS − ET
NS is stored

(directly) in S1 or S2. However, we can compute the adjacency query (na) in the
following way.

First we show that the nested structure of S2 corresponds to an inclusion struc-
ture of regions of planar dual DR. We need some definitions. Let {v1, v2, . . . , vf+3}
be the set of vertices of DR. The root v1 of TNS corresponds to the north (outer)
face. For each edge e = (vi, vk) ∈ EEW we assign the following region R(vi, vk) of
DR as follows. Let Pi be the path vi to v1 and Pk be the path vk to v1. Then R(vi, vk)
is the region enclosed by two pathes Pi, Pk, and edge e. No region R(vi, vk) can
include only a proper part of the other. (Since, otherwise, assume that R(vi, vk)
includes a proper part of R(vj , vl), now there is an edge (vj , vl) ∈ EEW such that
vj ∈ R(vi, vk) and vl /∈ R(vi, vk), however then edge (vj , vl) intersect some edge
on the boundary of R(vi, vk), a contradiction.) By the planarity of DR, we have
the following lemma.

Lemma 6. R(vi, vk) properly includes R(vj , vl) if and only if the pair of ‘[’ and
‘]’ for edge (vi, vk) encloses the pair of ‘[’ and ‘]’ for edge (vj , vl).

Now let consider face fj which is locating on the north side of fi but fj �=
p(fi). Assume k = fEN(i), and its corresponding vertex is vk. Let v be the
upper-right corner of fi. If v is n-missing, we assume l = fWS(j). (See Fig.
5(a).) Otherwise we assume l = fES(j). (See Fig. 5(b).) Let vl be the l-th
vertex of TNS in preorder. Each of the two edges (vi, vk) and (vj , vl) represents
some ew-adjacency. Let R

′
(vi, vk) be the region obtained from region R(vi, vk)

by eliminating the face with edge (vi, vk) on its contour. Then the pair of ‘[’
and ‘]’ for edge (vi, vk) immediately encloses the pair of ‘[’ and ‘]’ for edge
(vj , vl) if and only if the region R

′
(vi, vk) has edge (vj , vl) on the contour of

R
′
(vi, vk).
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Fig. 5. Illustration for query (na)

We have the following lemma.
Lemma 7. Assume that face fj is not the parent face of fi. Face fj is located
on the north side of fi if and only if the pair of ‘[’ and ‘]’ for edge (vi, vk)
immediately encloses the pair of ‘[’ and ‘]’ for edge (vj , vl). (See Fig. 5.)
Proof. (⇒) Since fj is located on the north side of fi, region R(vi, vk) includes
region R(vj , vl). (See Fig. 5.) Then the pair of ‘[’ and ‘]’ for (vi, vk) encloses the
pair of ‘[’ and ‘]’ for (vj , vl). In addition, when the face having edge (vi, vk) on
its contour is eliminated from R(vi, vk), (vj , vl) appears on the contour of the
resulting region. Thus the pair of ‘[’ and ‘]’ for (vi, vk) immediately encloses the
pair of ‘[’ and ‘]’ for (vj , vl).

(⇐) Since the pair of ‘[’ and ‘]’ for (vi, vk) immediately encloses the pair
of ‘[’ and ‘]’ for (vj , vl), when the face having edge (vi, vk) on its contour is
eliminated from R(vi, vk), (vj , vl) appears on the contour. Thus fj is located on
the north side of fi. as shown in Fig. 5. Note that each of the two edges (vi, vk)
and (vj , vl) corresponds to some ew-adjacency. ��
By Lemma 7, we can compute the query (na) in the following way. We have the
following two cases.

Case 1: fj is the parent face of fi.
fj ∈ north(i) holds. Note that, by using the enclose operation in S1, we can

compute whether fj is the parent face of fi or not in O(1) time.
Case 2: Otherwise.

By Lemma 7, the pair of ‘[’ and ‘]’ for edge (vi, vk) immediately encloses
the pair of ‘[’ and ‘]’ for edge (vj , vl) if and only if fj ∈ north(i). Let v be
the upper-right corner of fi. We have the following two subcases. Assume that
a = match(S1, select(S1, i, ()), that is a is the position of ‘)’ for vi in S1.
Case 2(a): v is n-missing. (See Fig. 5(a).)

In this case l = fWS(j) holds. Assume b = select(S1, j, (). Then
enclose(S2, select(S2, b − 3, 1) − 1) = select(S2, a − 3, 1) − 1

if and only if fj ∈ north(i). Since select(S2, b − 4, 1) in above equation indicates
the first ‘]’ among |west(j)| of consecutive ‘]’s, select(S2, b − 3, 1) indicates
the next character to |west(j)| of consecutive ‘]’s. Thus select(S2, b − 3, 1) − 1
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indicates the last ‘]’ among |west(j)| of consecutive ‘]’s. Note that the indicated
‘]’ above corresponds to edge (vj , vl).
Case 2(b): v is e-missing. (See Fig. 5(b).)

In this case l = fES(j) holds. Similar to Case 2(a), assume c = match(S1,
select(S1, j, ()). Then

enclose(S2, select(S2, c − 4, 1)) = select(S2, a − 3, 1) − 1
if and only if fj ∈ north(i).

Therefore we can compute query (na) in constant time.
Finally we consider for query (sa). Face fi is located on the north side of fj if

and only if fj is located on the south side of fi. Thus we can compute the query
(sa) by query (na).

6 The Degree Query

In this section we explain how to compute the number of neighbour faces in the
designated direction. We can compute such a query in O(1) time with a help
of the additional string SA of o(n) bits. We consider the following four degree
queries (wd), (ed), (nd), and (sd) for each direction.
(wd) |west(i)|: How many faces are located on the west side of face fi?

In Section 3 we explained how to find Li in S2. Since |west(i)| = |Li|, we can
compute the query (wd) in O(1) time.
(ed) |east(i)|: How many faces are located on the east side of face fi?

The computation of query (ed) is symmetric to (wd). So we omit the detail.
(nd) |north(i)|: How many faces are located on the north side of face fi?

Let vi be the vertex corresponding to fi. Let fEN(i) = k be the northmost
face among faces locating on east side of fi, and vk be its correponding ver-
tex. Let g1, g2, . . . , g|north(i)| be the faces locating on the north side of fi from
west to east order. Let vg

1 , vg
2 , . . . , vg

|north(i)| be the vertices corresponding to
g1, g2, . . . , g|north(i)|, respectively. Note that face g1 is the parent face of fi. Let
v be the upper-right corner of fi. We have the following two cases.

Case 1: v is n-missing
Assume that the pair of ‘[’ and ‘]’ in S

′

2 for edge (vi, vk) is at position a and
b in S

′

2, respectively. Note that the values of a and b can be computed in O(1)
time by basic queries. Then the pairs immediately enclosed by the pair of S

′

2[a]
and S

′

2[b] are only pairs of ‘[’ and ‘]’ for edges (vg
1 , vg

2), (vg
2 , vg

3), . . . , (vg
|north(i)|−1,

vg
|north(i)|). Thus |north(i)| = (wrapped(S2, a)/2) + 1.

Case 2: v is e-missing
Similar to Case 1, assume that the pair of ‘[’ and ‘]’ in S

′

2 for edge (vi, vk) is at
position a and b in S

′

2, respectively. Then the pairs immediately enclosed by the
pair of S

′

2[a] and S
′

2[b] are only pairs of ‘[’ and ‘]’ for edges (vg
1 , vg

2), (vg
2 , vg

3),
. . . , (vg

|north(i)|−1, v
g
|north(i)|), (v

g
|north(i)|, vk). Thus |north(i)| = wrapped(S2, a)/2.

Therefore we can compute query (nd) in O(1) time.
(sd) |south(i)|: How many faces are locating on the south side of face fi?

Let v be the lower-left corner of fi. We have the following two cases.
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Case 1: v is w-missing
In this case face f is located on the south side of fi if and only if its parent
face is fi. Thus we need to compute the number of faces with the parent face fi.
Hence |south(i)| = wrapped(S1, select(S1, i, ())/2. Therefore we can compute
|south(i)| in O(1) time.

Case 2: v is s-missing
In this case there is exactly one face on the south side of fi such that its parent
face is not fi. Such a face is the westmost face among the faces locating on
the south side of fi. For other faces the condition is similar to Case 1. Thus
|south(i)| = 1+wrapped(S1, select(S1, i, ())/2. Hence we can compute |south(i)|
in O(1) time.

Therefore we can compute the number of neighbour faces of fi in the des-
ignated direction in O(1) time. Thus we can compute the degree of fi in O(1)
time.

7 Reconstruction of R

Given the string S = SR + SA for a based rectangular drawing R, we can
reconstruct R by using the queries in Section 4 and Section 5. We have the
following theorem.

Theorem 1. Given the string SR of a based rectangular drawing R, one can
construct an additional string SA of o(n) bits in O(n) time. Then one can re-
construct R from S in O(n) time.

Proof. Proof by induction. If we know about all west and north adjacencies for
each 1, 2, . . . , (i−1)-th face, we can also compute west and north adjacencies for
the i-th face in O(|north(i)| + |west(i)|) time by the queries. Thus the running
time of the algorithm is O(m) = O(n) in total. ��

8 Conclusion

In this paper we designed a compact string S for a based rectangular drawing.
Given the string, we can (1) compute the adjacency and degree queries on the
faces in O(1) time and (2) reconstruct the original based rectangular drawing R
from S in O(n) time. Also S supports a variety of queries for R.

Let Nk be the number of based rectangular drawings with k inner faces. By
implementing an efficient enumeration algorithm for based rectangular drawings,
[10,11] gave N11 = 10948768. Thus at least 24 > log N11 = 23.5 bits are needed
to encode a based rectangular drawing with 11 inner faces, while the total length
of our string is 5 · 11 − 6 = 49 bits without SA. Thus we conjecture that there
are still many chances to reduce the length of the string. For N12 = 89346128, at
least 27 > log N12 = 26.4 bits are needed for a based rectangular drawing with
12 inner faces, while our encoding needs 5 · 12 − 6 = 54 bits.

Our future work is to give more compact strings for based rectangular draw-
ings with efficient query supports. A lower bound of the length of the strings for
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based rectangular drawings is also needed to evaluate “the compactness” of the
strings.
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Abstract. In this paper, we present a new and efficient algorithm for
solving the LCS problem for two strings. Our algorithm runs in O(R log
log n+n) time, where R is the total number of ordered pairs of positions
at which the two strings match.

1 Introduction

The longest common subsequence(LCS) problem is a classic and well-studied
problem in computer science with extensive applications in diverse areas rang-
ing from spelling error corrections to molecular biology. A subsequence of a string
is obtained by deleting zero or more symbols of that string. The longest com-
mon subsequence problem for two strings, is to find a common subsequence in
both strings, having maximum possible length. More formally, suppose we are
given two strings X [1..n] = X [1]X [2] . . . X [n] and Y [1..n] = Y [1]Y [2] . . . Y [n].
A subsequence S[1..r] = S[1]S[2] . . . S[r], 0 < r ≤ n of X is obtained by delet-
ing n − r symbols from X . A common subsequence of two strings X and Y ,
denoted cs(X, Y ), is a subsequence common to both X and Y . The longest com-
mon subsequence of X and Y , denoted lcs(X, Y ) or LCS(X, Y ), is a common
subsequence of maximum length. We denote the length of lcs(X, Y ) by r(X, Y ).
In this paper, we assume that the two given strings are of equal length. But our
results can be easily extended to handle two strings of different length.

Problem “LCS”. LCS Problem for 2 Strings. Given strings X and Y , compute
the Longest Common Subsequence of X and Y .

The longest common subsequence problem for k strings (k > 2) was first
shown to be NP-hard [13] and later proved to be hard to be approximated [10].
The restricted but, probably, the more studied problem that deals with two
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strings has been studied extensively [20,16,15,14,9,8,7]. The classic dynamic pro-
gramming solution to LCS problem, invented by Wagner and Fischer [20], has
O(n2) worst case running time. Masek and Paterson [14] improved this algorithm
using the “Four-Russians” technique [1] to reduce the worst case running time
to O(n2/ logn)1. Since then not much improvement in terms of n can be found
in the literature. However, several algorithms exist with complexities depending
on other parameters. For example, Myers in [15] and Nakatsu et al. in [16] pre-
sented an O(nD) algorithm, where the parameter D is the simple Levenshtein
distance between the two given strings [11]. Another interesting and perhaps
more relevant parameter for this problem is R, which is the total number of
ordered pairs of positions at which the two strings match. More formally, we say
a pair (i, j), 1 ≤ i, j ≤ n, defines a match, if X [i] = Y [j]. The set of all matches,
M , is defined as follows:

M = {(i, j) | X [i] = Y [j], 1 ≤ i, j ≤ n}

Observe that |M | = R. Hunt and Szymanski [9] presented an algorithm to
solve Problem LCS in O((R+n) log n) time. They also cited applications, where
R ∼ n and thereby claimed that for these applications the algorithm would
run in O(n log n) time. For a comprehensive comparison of the well-known al-
gorithms for LCS problem and study of their behaviour in various application
environments the readers are referred to [4].

In this paper, we revisit the much studied LCS problem for two strings and
present new algorithms using some novel ideas and interesting observations. Our
main result is an O(R log log n + n) algorithm for Problem LCS. The rest of the
paper is organized as follows. In Sections 2 we present an O(n2 + R log log n)
algorithm, namely LCS-I, to solve Problem LCS, which is an easy extension
of the algorithms and techniques of [17]. LCS-I provides the base of our new
improved algorithm, LCS-II, described in Section 3. Using some novel techniques,
we achieve O(R log log n+n) running time for LCS-II. Finally, we briefly conclude
in Section 4.

2 A New Algorithm

In this section, we present Algorithm LCS-I which works in O(n2 + R log log n)
time. Note that, LCS-I is an easy extension of the algorithms presented in [17]2

and the main contribution of this paper is an improved algorithm, namely LCS-
II, with O(R log log n + n) running time, to be presented in Section 3.

From the definition of LCS it is clear that, if (i, j) ∈ M , then we can calculate
T [i, j], 1 ≤ i, j ≤ n by employing the following equation [17]:

1 Employing different techniques, the same worst case bound was achieved in [5].
2 In [17], only the running time of LCS-I was mentioned without explicitly devising

the algorithm. We revisit LCS-I here for the sake of completeness because LCS-II
heavlily depends on the concept used in LCS-I.
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T [i, j] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Undefined if (i, j) /∈ M,

1 if (i = 1 or j = 1) and (i, j) ∈ M

max 1≤�i<i
1≤�j<j

(�i,�j)∈M

{(T [�i, �j])} + 1 if (i, j �= 1) and (i, j) ∈ M.

(1)
Here we have used the tabular notion T [i, j] to denote r(X [1..i], Y [1..j]). From
Equation 1, it follows that only the entries T [i, j] such that (i, j) ∈ M are
useful. Therefore, we can ignore all T [i, j] with (i, j) /∈ M from the calculation.
In order to do that, we need a preprocessing step to construct the set M in sorted
order according to their position they would be considered in the algorithm (we
consider a row by row operation). Such a preprocessing algorithm, referred to as
“Algorithm Pre” in the rest of this paper, was presented in [17] which runs in
O(R log log n + n) time3. After we have computed the set M (using Algorithm
Pre), we can start computing the entries T [i, j], (i, j) ∈ M according to the
Equation 1. Since we are not calculating all the entries of the table, we need to
use a global variable and appropriate pointers to keep track of the actual LCS.
For the efficient implementation of the computation of Equation 1, we utilize
the following facts observed in [17].

Fact 1. ( [17]) Suppose (i, j) ∈ M . Then for all (i′, j), i′ > i ((i, j′), j′ > j), we
must have T [i′, j] ≥ T [i, j] (T [i, j′] ≥ T [i, j]). �

Fact 2. ( [17]) The calculation of the entry T [i, j], (i, j) ∈ M, 1 ≤ i, j ≤ n is
independent of any T [�, q], (�, q) ∈ M, � = i, 1 ≤ q ≤ n. �

Following the techniques of [17], we also use the following problem and relevant
result.

Problem “RMAX”. Range Maxima Query Problem. Suppose we are given a
sequence A = a1a2...an. A Range Maxima (Minima) Query specifies an interval
I = (is, ie), 1 ≤ is ≤ ie ≤ n and the goal is to find the index � with maximum
(minimum) value a� for � ∈ I.

Theorem 1. ( [6,3]) The RMAX problem can be solved in O(n) preprocessing
time and O(1) time per query. �

The algorithm LCS-I proceeds as follows. We maintain an array H of length
n where, for T [i, j] we have, H [�] = max1<k<i,(k,�)∈M (T [k, �]), 1 ≤ � ≤ n. The
‘max’ operation, here, returns 0, if there does not exist any (k, �) ∈ M within
the range. Given the updated array H , we can easily perform the task by using
the constant time range maxima query (Theorem 1). And Fact 1 makes it easy
to maintain the array H on the fly, as we proceed as follows. As usual, we
proceed in a row by row manner. We use another array S, of length n, as a
temporary storage. When we find an (i, j) ∈ M , after calculating T [i, j], we store
S[j] = T [i, j]. We continue to store in this way as long as we are in the same
3 In [17], the running time of Algorithm Pre is reported as O(R log log n) under the

usual assumption that R ≥ n.
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row. As soon as we find an (i′, j) ∈ M, i′ > i, i.e. we start processing a new row,
we update H with new values from S. The correctness of the above procedure
follows from Fact 1 and 2. However, for the constant time range maxima query we
need to do a O(n) preprocessing as soon as H is updated. But due to Fact 2, it is
sufficient to perform this preprocessing once per row. So, the computational effort
added for this preprocessing is O(n2) in total. Therefore we get the following
theorem.

Theorem 2. LCS-I solves Problem LCS in O(n2 + R log log n) time using
θ(max(R, n)) space. �
The outline of LCS-I is presented formally in the form of Algorithm 1. Note that
we can shave off the log log n term from the running time reported in Theorem 2
as follows. Since we have an n2 term anyway in the running time, we do not need
to compute the set M in the preprocessing step using Algorithm Pre. Instead,
we consider each T [i, j], 1 ≤ i, j ≤ n and perform useful computation only when
(i, j) ∈ M .

Algorithm 1. Outline of LCS-I
1: Construct the set M using Algorithm Pre. Let Mi = (i, j) ∈ M, 1 ≤ j ≤ n.
2: globalLCS.Instance = ε
3: globalLCS.Value = 0
4: for i = 1 to n do
5: S[i].V alue = 0 {Initialize the temporary array S}
6: S[i].Instance = ε
7: end for
8: for i = 1 to n do
9: H = S{Update H for the next row}

10: Preprocess H.V alue for Range Maxima Query
11: for each (i, j) ∈ Mi do
12: maxindex = RMQH(1, j − 1){Range Maxima Query on Array H}
13: T .V alue[i, j] = H [maxindex].V alue + 1
14: T .P rev[i, j] = H [maxindex].Instance
15: S[j].V alue = T.V alue[i, j]
16: S[j].Instance = (i, j)
17: if globalLCS.value < T .V alue[i, j] then
18: globalLCS.Value = T .V alue[i, j]
19: globalLCS.Instance = (i, j)
20: end if
21: end for
22: end for
23: return globalLCS

3 The Improved Algorithm

In this section, we present the main result of this paper. In particular, we im-
prove the running time of LCS-I, as reported in Theorem 2, with some nontrivial
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modifications. The resulting Algorithm, LCS-II, will eventually run in O(R log
log n + n) time. As is explained in the previous section, LCS-I exploits the con-
stant time query operation (Theorem 1) of Problem RMAX. However, due to
the O(n) preprocessing step of RMAX, we can’t eliminate the n2 term from the
running time of LCS-I. But a very important, albeit easily observable, fact is
that the range maxima queries made in LCS-I is always of a special form.

Fact 3. All the range maxima queries in Algorithm LCS-I are of the form
RMQ(1, j), 0 ≤ j ≤ n. �

From Fact 3, it seems that Problem RMAX may be too general a tool to solve
LCS and it seems to be worthwhile to look for a better solution exploiting the
special query structure reported in Fact 3. Indeed, as we shall show that we can
exploit this special structure in the query to avoid the O(n) preprocessing step
and hence the n2 term from the running time reported in Theorem 2. However
the price we pay is that the query time increases to O(log log n). We present the
idea as follows.

... → (αi, xi) → (αj , xj) → (αk, xk) → ...

Fig. 1. Partial EA with ei, ej , and ek

Assume that we have an array A[1..n] on which we want to apply the range
maxima queries. We now use an elegant data structure (referred to as vEB data
structure henceforth) invented by van Emde Boas [19] that allows us to maintain
a sorted list of integers in the range [1..n] in O(log log n) time per insertion and
deletion. In addition to that it can return next(i) (successor element of i in
the list) and prev(i) (predecessor element of i in the list) in constant time. We
maintain a vEB data structure EA, where each element ei ∈ EA, 1 ≤ i ≤ |EA| is
a 2-tuple (V alue, Pos). The order in EA is maintained according to ei.Pos, 1 ≤
i ≤ |EA|. Now consider 3 entries ei, ej, ek ∈ EA such that ej = next(ei), ek =
next(ej). Let ei = (αi, xi), ej = (αj , xj) and ek = (αk, xk) (Figure 1). The
invariant we maintain is as follows:

RMQ(1..x) = αi, prev(ei).Pos < x ≤ xi

RMQ(1..x) = αj , xi < x ≤ xj

RMQ(1..x) = αk, xj < x ≤ xk

Assuming that we have the above data structure at our disposal, answering a
query is easy as follows. Consider a query RMQ(1..x′). To answer this query,
we just need to return the ‘Value’ of the element, which would be next in order,
if a new element with Pos = x′ were inserted in EA. So, we create an entry
e′ = (null, x′) and insert it in EA and get the ‘Value’ of the Next(e′). Finally,
we delete e′ = (null, x′) from EA. The only thing we need to ensure is that
if there is already an entry e in EA such that e.Pos = x′, e′ must be placed
before e in EA. This is to ensure that Next(e′) = e, as required. This can be
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easily achieved if we take ‘Value’ into account while preserving the order in EA

for equal values of ‘Pos’ and assume ‘null’ to be a lesser value than any other
‘Value’. Note, however, that, by definition, in ‘normal’ state, there can be no two
elements in EA having same value for ‘Pos’.The steps are formally presented in
Algorithm 2.

Algorithm 2. Steps to answer the query RMQ(1..x′) on array A

1: Insert e′ = (null, x′) in EA

2: Result = Next(e′).V alue
3: Delete e′ from EA

4: return Result

The correctness of Algorithm 2 follows from the invariants maintained for
EA. Now it remains to show how we can maintain that invariant under update
operations in the context of the Algorithm LCS-I. Recall that our goal is to get
the answer of appropriate range maxima queries on the array H in Algorithm
LCS-I and we operate in a row by row basis. For the sake of convenience, we use
the following notation.

Mi = {(i, j)|X [i] = Y [j], 1 ≤ j ≤ n}

We start with reporting the following fact.

Fact 4. T [i, j] = 1, for all (i, j) ∈ M1. �

In cases, where M1 = ∅ or a number of subsequent Mi = ∅, i > 1, we have the
following fact.

Fact 5. T [i, j] = 1, for all (i, j) ∈ Mi such that Mk = ∅, for all 1 ≤ k < i. �

(0, j′ − 1) → (1, n) → (∞, ∞)

Fig. 2. Initial EH

We initialize EH with three elements, es = (0, j′ − 1), ee = (1, n) and e∞ =
(∞, ∞), where (1, j′) ∈ M1 and there exists no j < j′ such that (1, j) ∈ M1
(Figure 2). Note that, if M1 = ∅ then, for initialization, we have to use Mi

instead of M1 such that Mk = ∅, for all 1 ≤ k < i (Fact 5). This initialization of
EH correctly maintains the invariants for the processing of the next row. Indeed,
for the next row, we must have RMQ(1..x) = 0 if x ≤ j′ − 1 (j′ − 1 is defined as
above) and RMQ(1..x) = 1 otherwise. The last element, e∞, is required to tackle
the general cases and here we assume ∞ to be greater than any number. Now
let us consider the case, where we process the subsequent rows. It is important
to note that as we process a particular row i, for each (i, j) ∈ Mi, we need to
update EH ; but this update is effective only for the next row, i.e. row i + 1. So,
as we process row i we perform the update on a temporary copy and as soon as
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... → (αi, xi) → (αj , xj) → (αk, xk) → ...

Fig. 3. Partial Ei+1
H with ei, ej , and ek

row i is completely processed we actually change the EH to make it ready for
row i + 1. In what follows, for the sake of convenience, we denote by Ei

H the
‘state’ of EH which is used to process row i.

Now consider the case that we are in row i and processing the match (i, x′ +
1) ∈ Mi. It is easy to see that we need the answer of the query RMQ(1..x′),
which can be obtained easily applying Algorithm 2 on Ei

H . So, according to
LCS-I, we would compute T [i, x′ +1] = RMQ(1..x′)+1 = α′(let). Now we need
to consider the updating of Ei

H to get the Ei+1
H to be used when processing row

i + 1. We initialize Ei+1
H with Ei

H and for each match (i, j) ∈ Mi we continue to
update Ei+1

H so that we get the ‘correct’ Ei+1
H as soon as the processing of row i

is finished. The update process is as follows. In what follows, we assume (without
the loss of generality) that we have ei, ej , ek ∈ Ei+1

H such that ej = next(ei), ek =
next(ej) (Figure 3). Let ei = (αi, xi), ej = (αj , xj) and ek = (αk, xk). Assume,
without the loss of generality, that xi < x′ + 1 ≤ xj . Since we have the value α′

at position x′ + 1, the query RMQ(1..x′ + 1) should return ζ ≥ α′ when we are
processing subsequent rows. So, first we check whether RMQ(1..x′ + 1) ≥ α′ on
the current Ei+1

H . It is clear that if the answer is positive, we don’t need to do any
update at all. Otherwise, we have, at position xj or before it (off course after xi)
a higher value α′. So we insert a new element (αj , x

′) to Ei+1
H , because up to x′

we have no change in the RMQ answers. Now we have to change ej = (αj , xj).
But this change may be influenced by ek = (αk, xk) as follows. We have two
cases.

Case 1.a: αk = α′. In this case, we just need to delete ej because ek = (αk =
α′, xk) has already taken into account the updated value α′ at position x′ +
1 ≤ xk (Figure 4).

... → (αi, xi) → (αj , x′) → (αk = α′, xk) → ...

Fig. 4. Updated EH for Case 1.a

Case 1.b: αk > α′. In this case, ek.V alue is greater than the updated value at
position x′ + 1 ≤ xj . So it is clear that up to position xj , we have α′ as
the highest value and hence we need to update ej such that ej.value = α′

(Figure 5).

... → (αi, xi) → (αj , x′) → (α′, xj) → (αk, xk) → ...

Fig. 5. Updated EH for Case 1.b

So far we have discussed the algorithm without analyzing the running time.
Theorem 3 below reports the running time of the Algorithm LCS-II.
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Theorem 3. LCS-II solves Problem LCS in O(R log log n + n) time.

Proof. It is clear that for each (i, j) ∈ M we do the following 3 steps.
1: Perform appropriate range maxima query using Algorithm 2
2: Compute T [i, j] from the result of Step 1
3: Update EH based on T [i, j]
It is easy to see that Step 1, i.e., Algorithm 2 requires O(log log n) time.

Step 2 requires O(1) time. In Step 3 we perform the update. Here, we first
check, using Algorithm 2, whether any update is indeed required. This, again,
requires O(log log n) time. Finally, if update is required, then we need to perform
constant number of insertion and/or deletion requiring, again, O(log log n) time.
So, for each (i, j) ∈ M the computation effort spent is O(log log n). Therefore,
Algorithm LCS-II requires O(R log log n + n) time to compute LCS. �

4 Conclusion

In this paper, we have studied the classic and much studied LCS problem for
two strings. Using some new ideas, we have presented an O(R log log n+n) time
algorithm to solve the problem where R is the total number of ordered pairs of
positions at which the two strings match. Although, R = O(n2), there are large
number of applications for which we have R ∼ n. Typical of such applications
include finding the longest ascending subsequence of a permutation of integers
from 1 to n, finding a maximum cardinality linearly ordered subset of some
finite collection of vectors in 2-space etc (for more details see [9] and references
therein). So in these situations our algorithm would exhibit an almost linear
O(n log log n) behavior. The techniques we have used to develop our algorithm
are new and, we believe, of independent interest. It would be interesting to
see whether our techniques could be extended for variants of LCS problems
(e.g. constrained LCS [18,2], rigid LCS [12]). Furthermore, in this paper, we
have implicitly presented an algorithm for the range maxima query problem.
Our algorithm allows restricted dynamic updates and considers a restricted sets
of queries. It would be interesting to see whether we can lift the restrictions
and/or improve the query and pre-processing time. Moreover, we believe that
this algorithm could be used in many other problems requiring similar sort of
restricted updates and queries.
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Abstract. Minimizing total completion time
�

Cj on normal batching
machine is solvable in polynomial time for fixed B(B > 1), while Mini-
mizing total completion time

�
Cj for arbitrary B and minimizing total

weighted completion time
�

WjCj are open problems. In this paper, we
consider the problem of scheduling jobs on a flexible batching machine in
order to minimizing the total completion time. We prove that the prob-
lem is strongly NP-hard. Then the problem with agreeable is NP-hard
even if there have three fixed capacities all the time.

Keywords: Scheduling; Batching machine; Complexity.

1 Introduction

A batch processing machine is one that can handle up to B jobs simultane-
ously all the time. The jobs that are processed together form a batch, and all
jobs contained in the same batch start and complete at the same time since the
completion time of a job is equal to the completion time of the batch to which
it belongs. The processing time of a batch is equal to the largest processing
time of any job in the batch (denoted by p − batch) or the sum of processing
times of all jobs in the batch (denoted by s − batch). The scheduling models for
batching machine are motivated by burn-in operations in semiconductor man-
ufacturing [11]. There are two variants: the unbounded model, where B ≥ n
and the bounded model, where B < n [16]. In this paper, we address bounded
problems of scheduling a p-batch processing machine, i.e. we assume that B < n
and the processing time of a batch is equal to the largest processing time of any
job in the batch.

A number of researchers have directed their attention toward batching prob-
lems. Santos and Magazine [14], and Tang [15] present integer programming
formulations and several procedures to determine optimal batches of jobs for a
single-stage production system. Ikura and Gimple [9] are the first researchers
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to address the problem of scheduling batch processing machines from a deter-
ministic scheduling perspective. J.Ahmadi, al et. [1] examine a class of problems
defined by a two or three machine flowshop where one of the machines is a
batch processing machine. More work on batching and scheduling includes Coff-
man, Nozari and Yannakakis [5], Julien and Magazine [10], Vickson, Magazine
and Santos [17], and Potts and Kovalyov [12]. Webster and Baker [18], and
P.Brucker, et al. [2] present overviews of algorithms and complexity results for
scheduling batch processing machines.

In the bounded problems of scheduling a batching machine, the capacity B
of the machine, the maximum number of jobs that the machine can process si-
multaneously, is fixed. But a burn-in oven in semiconductor manufacturing has
different capacities for different sizes of wafer. So the capacity B of the machine
is not constant. This kind machine is called a flexible batching machine. To be
able to refer to the problems under study in a concise manner, the problem of
minimizing total completed time on a single flexible batching machine is repre-
sented by 1|d−Batch|

∑
Cj , where d stands for different capacities of the flexible

batching machine, and the bounded problems of scheduling a normal(not flex-
ible)batching machine is denoted by 1|p − Batch|

∑
Cj or 1|B|

∑
Cj , where B

means a batching machine.
In this paper, we deal with the problem 1|d−Batch|

∑
Cj described as follows.

There are n independent jobs to be processed on a flexible batching machine
which can handle up to Bi jobs simultaneously in time [ti−1, ti), where Bi is the
capacity of the machine in [ti−1, ti) and t0 = 0, i = 1, 2, · · ·. For j = 1, 2, · · · , n,
each job Jj requires processing during a given non-negative uninterrupted time
pj , and is available for processing from time zero onwards. All data are assumed
to be deterministic. The objective is to determine a schedule π so that the total
completion time

∑
Cj is minimized. When capacity Bi and ti are agreeable(i.e.

ti ≤ tj implies Bi ≤ Bj), we represent the problem by 1|inc − d − Batch|
∑

Cj ,
where inc stands for increasing.

If all the capacities are identical, such as Bi ≡ B(i = 1, 2, · · ·), our problem
1|d − Batch|

∑
Cj becomes a normal batching scheduling problem 1|B|

∑
Cj .

Minimizing total completion time
∑

Cj is undoubtedly the most vexing bounded
problem. Chandru et al. [3,4] present heuristics and a branch-and-bound algo-
rithm as well as an O(m3bm+1) time dynamic programming algorithm for the
case of m different job processing times(m < n). Hochbaum and Landy [8]
present a faster algorithm that requires O(m23m) time. P. Brucker al et. [2]
prove that 1|B|

∑
Cj is solvable in polynomial time for fixed B, where B > 1,

by deriving an O(nB(B−1)) time dynamic programming algorithm for its solu-
tion. C. K. Poon and W. Yu [13] present another algorithm that runs in O(n6B)
time for 1|B|

∑
Cj . B. Fan and G. Tang [6] are the first researchers to ad-

dress the problem of scheduling a flexible batch machine. They proved that
1|d − Batch|Cmax is Strongly NP-hard and its two agreeble cases are NP-hard.
As to the unbounded model, P.Brucker al et. [2] given a characterization of
a class of optimal schedules, which leads to a generic dynamic programming
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algorithm for minimizing any regular cost function
∑n

j=1 fj and an O(n log n)
time algorithm for minimizing

∑
WjCj .

Minimizing total completion time
∑

Cj on normal batching machine is solv-
able in polynomial time for fixed B(B > 1), while Minimizing total comple-
tion time

∑
Cj for arbitrary B and minimizing total weighted completion time∑

WjCj are open problems. In this paper, we prove that the flexible batching
problem 1|d − Batch|

∑
Cj is strongly NP-hard. Then we show that 1|inc − d −

Batch|Cmax is NP-hard even if there have three fixed capacities all the time in
Section 2. Section 3 is a brief conclusion.

2 NP-Hardness of Total Completion Time Problem

In this section, firstly, we show that the problem of minimizing total completion
time on a flexible batching machine is strongly NP-hard. This is done by reducing
the strongly NP-hard 3-Partition [7] to the decision version of our problem 1|d−
Batch|

∑
Cj .

3-Partition. Given positive integers t, A and a set of integers S = {a1, · · · , a3t}
with

∑3t
j=1 aj = tA and A/4 < aj < A/2 for 1 ≤ j ≤ 3t, does there exit a

partition 〈S1, S2, · · · , St〉 of S into 3-element sets such that
∑

aj∈Si

aj = A,

for each j?
Given an instance P of 3-Partition, we first describe the details of the corre-

sponding flexible batching problem L . There are basically three classes of jobs
in L . The first class, J1 = {J1

ij |1 ≤ i ≤ t, j = 1, 2}, where job lengths are
specified as follows:

p1
ij =

1
4
A, i = 1, 2, · · · , t − 1, j = 1, 2.

The second class, J2 = {J2
i |1 ≤ i ≤ 3t}, with job lengths specified as follows:

p2
i = ai, i = 1, 2, · · · , 3t.

The finally class, J3 = {J3
i |1 ≤ i ≤ n̄}, with job lengths specified as follows:

p3
i = t2A − 5

4
tA, i = 1, 2, 3.

We define the machine can handle up to B1 = 2 jobs simultaneously in time
[t2i−1, t2i), i = 1, 2, · · · , t−1, B2 = n̄ in time [t2t−1, t2t), and B3 = 1 in other time,
where t2(i−1) = 5

4 (i − 1)A, t2i−1 = t2(i−1) + A, i = 1, 2, · · · , t,and t2t = t2A − 1
4A.

The bound is given by δ = 39
8 t2A− 15

8 tA+ 3
2A. We are asked to answer whether

there exists a schedule π for instance L such that its total completion time less
than or equal to δ.
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Clearly, the construction of L takes a polynomial time under the binary
coding. In the following, we will show that L has a schedule π such that

∑
Cj ≤

δ if and only if the 3-Partition instance P has a partition 〈S1, S2, · · · , St〉 exists
which has the desired form. We first introduce some useful properties associated
with feasible schedules and optimal schedules of L .

Lemma 1. For any feasible schedule π of jobs {J1
ij |1 ≤ i ≤ t, j = 1, 2} and

{J2
i |1 ≤ i ≤ 3t} in L , the total completed time of such schedule satisfies

∑
Cj(π) >

5
4
t(t − 1)A +

5
3
A.

Proof. The result is established by scheduling the jobs J1 ∪ J2 and J1 ∪ Ĵ2

respectively, where the job lengths p̂2
i = 1

4A, i = 1, 2, · · · , 3t in Ĵ2 and others are
same as that in L .

�

Suppose π is an optimal schedule of L . There have a conclusion about the
structure of π as following.

Lemma 2. If π satisfy
∑

Cj(π) ≤ δ, then such schedule has the following two
properties:

1. The third class jobs are processed as a batch with the start processing time
t2t−1 in schedule π.

2. The jobs of J1 ∪ J2 are completed no later than the time t2t−1 in schedule
π.

Proof. Notice the construction of L as the Fig.1, since p3
i = t2A − 5

4 tA >
t2t−1, i = 1, 2, 3 and

∑
Cj(π) ≤ δ, we can easily show that the first property

holds by a standard interchange argument.

�C

�1

�2

�3

· · · �
time

�

0(t0)
�

t1
�

t2
�

t3
�

t2t−4

�

t2t−3

�

t2t−2

�

t2t−1

�

t2t

Fig. 1. The construction about capacities of L , where C denotes the capacity of ma-
chine

From the Lemma 1, if
∑

Cj(π) ≤ δ, the jobs of J1 ∪ J2 must be processed
before the jobs of J3 in schedule π. Summarizing previous discussions, we have
the second property.

�

Based on the Lemma 1 and Lemma 2, we now prove the following theorem.

Theorem 1. The problem 1|d − Batch|
∑

Cj is strongly NP-hard.
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Proof. Suppose a partition 〈S1, S2, · · · , St〉 exists which has the desired form.
That is, each set Si consists of three elements ai1, ai2 and ai3 such that for all
1 ≤ i ≤ t,

∑3
j=1 aij = A. Then the following schedule π has total completion

time
∑

Cj ≤ δ = 39
8 t2A − 15

8 tA + 3
2A. About the first class jobs in such sched-

ule, the jobs {J1
i1, J

1
i2} are processed as a batch with the start processing time

S({Ji1, Ji2}) = t2i−1, i = 1, 2, · · · , t − 1, and the third class jobs J3 processed as
a batch in the time interval [t2t−1, t2t).

See Fig.2. Note that this basic framework leaves a series of t “time slots”
open, each of length exactly A and in which the machine can handle up to one
job simultaneously. These are precisely tailored so that we can fit in the second
class jobs as follows. For each i = 1, 2, · · · , t.

S(J2
i1) = t2(i−1)

S(J2
i2) = t2(i−1) + ai1

S(J2
i3) = t2(i−1) + ai1 + ai2

Since
∑3

j=1 aij = A, i = 1, 2, · · · , t, this yields a valid schedule with
∑

Cj(π) ≤ δ.

� A �

J2
1,1 J2

1,2 J2
1,3

J1
1,1

J1
1,2

� A �

J2
2,1 J2

2,2 J2
2,3

· · ·
J1

t−1,1

J1
t−1,2

� A �

J2
t,1 J2

t,2 J2
t,3 J3

1

J3
2

J3
3

�
time

�

0(t0)
�

t1
�

t2
�

t3
�

t2t−3

�

t2t−2

�

t2t−1

�

t2t

Fig. 2. Where the jobs in the same column are processed as a batch

Conversely, suppose a schedule π with
∑

Cj(π) ≤ δ does exist. From Lemma
2, the third class jobs must be processed as a batch with the start processing
time t2t−1 and J1 ∪ J2 are completed before the time t2t−1 in schedule π. Since

∑

j∈J1∪J2

pj =
1
4
A(2t − 2) + tA =

3
2
tA − 1

4
A,

which is equal to the total length that machine can handle up before t2t−1, it
is easy to see that the first class jobs must be scheduled the same way as they
are in Fig.2. Thus there are again t slots of length A into which the second class
jobs must be placed.

Since the total length of the second class jobs is
∑3t

i=1 ai = tA, every one
of these t slots must be filled completely, and hence must contain a set of the
second class jobs whose total length is exactly A. Now since every ai > A/4, no
such set can contain more than three jobs. Similarly, since every ai < A/2, no
such set can contain less than three jobs. Thus each set contains exactly three
jobs of the second class. Hence, by setting Si = {ai|t2(i−1) < S(p2

i ) ≤ t2i−1},
i = 1, 2, · · · , 3t, we obtain our desired partition.

�

We next establish the NP-hardness of the problem 1|inc − d − Batch|
∑

Cj by
a reduction from the NP-complete PARTITION problem.
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PARTITION. Given m positive integers a1, a2, · · · , am, with
∑m

j=1 aj = 2A,
do there exit two disjoint subsets S1, S2 ∈ I = {1, 2, · · · , m} such that

∑

j∈Si

aj = A,

for i = 1, 2?
Without loss generality, we assume that m > 2 throughout the section. To

any instance of the PARTITION problem, we construct an instance L of 1|inc−
d − Batch|

∑
Cj as follows:

There are two classes of jobs in I . The first class, {J1
ij |1 ≤ i ≤ m, j = 1, 2, 3},

which are classified into m types. For each i(1 ≤ i ≤ m), define three jobs of
type i: Ji1, Ji2, and Ji3. Their processing times are given by

p1
i1 = 4iA + ai, pi2 = 4iA − ai, pi3 = 4iA.

The second class, {J2
i |i = 1, 2, · · · , U}, which processing times are given by

p2
i = U ,

where U = 16m3A + 6m2A + 2mA. We define the machine can handle up to
B1 = 1 jobs simultaneously in the time [0, t1), B2 = 2 in [t1, t2), B3 = 3 in other
time, where t1 = 2m(m+1)A, t2 = 4m(m+1)A+A. Let δ = U2 +(t2 +1)U . We
are going to show that for the constructed scheduling problem L , a schedule π
with

∑
Cj(π) ≤ δ exists if and only if the PARTITION problem has a solution.

Lemma 3. Suppose π is an optimal schedule of I . If
∑

Cj(π) ≤ δ, then second
class jobs are processed as a batch with the start processing time t2 in π.

Proof. The result is established by a standard job interchange argument.
�

As a result of Lemma 3, the first class jobs must be completed before the time t2
in one optimal schedule π with

∑
Cj(π) ≤ δ. Otherwise, there exist at least a job

which is processed after the third class jobs. Without loss generality, we assume
J1

i is such job, which start processing time is not less than t2 +U . Then the total
completion time of such optimal schedule π has a lower bound as following.

∑
Cj(π) > U2 + U + t2. (1)

The inequality (1) is contrary to
∑

Cj(π) ≤ δ. Thus, we have the following
conclusion.

Lemma 4. Suppose π is an optimal schedule of I . If
∑

Cj(π) ≤ δ, then first
class jobs are processed before the time t2.

Suppose π is a feasible schedule of 1|inc−d−Batch|
∑

Cj and the capacities Bi

are indexed according to the order 0 < Bi < Bi+1, i = 1, 2, · · ·. If a batch Bj of π
meets Bi <| Bj |≤ Bi+1, we denote the Bj as Bi+1 type batch.In the remainder
of the proof, we show that PARTITION has a solution if and only if there exists
a schedule for the corresponding instance I , and the total completed time of
such schedule can not exceed δ.
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Theorem 2. The problem 1|inc − d − Batch|
∑

Cj is NP-hard, even if there
have only three capacities all the time.

Proof. First, suppose that the instance of PARTITION has a solution. Without
loss of generality, we assume that S1 = {1, 2, · · · , k}, and S2 = {k + 1, k +
2, · · · , m}. Now, construct schedule π as the following Fig.3. It is easy to check
that

∑
Cj(π) ≤ δ.

J1
1,1 · · · J1

k,1 J1
k+1,2 · · · J1

m,2

J1
1,2

J1
1,3

· · · J1
k,2

J1
k,3

J1
k+1,1

J1
k+1,3

· · · J1
m,1

J1
m,3

J2
i (i = 1, 2, · · · , U)

��

0
�

t1
�

t2
�

t2 + U

Fig. 3. Illustration of the scheduling π, in which the jobs in the same column are
processed as a batch

Conversely, suppose that there exists a schedule π with
∑

Cj(π) ≤ δ. From
the Lemma 4, the first class jobs must be completed before t2. Let σ denotes the
partial schedule of the first class jobs in π, then Cmax(σ) ≤ t2.

By a standard interchange argument of jobs and batches, we can get a new
partial schedule σ

′
from σ, all the B1 type batches are processed before the

B2 type batches in such new partial schedule and Cmax(σ
′
) ≤ Cmax(σ) ≤ t2.

About σ
′
, suppose the sum of the time, in which the machine is idle, is a(a ≥ 0)

before time t1. Let |B1| is the sum of the processing time of B1 type batches
in σ

′
. Because there are only B1 type batches processed before the time t1,

a + |B1| ≥ t1. Let d(F ) be defined for each batch F ∈ B2 in σ
′

as follows.
d(F ) is equal to the difference of the processing times of its two jobs. Then the
processing time of batch F is

1
2

(∑{
p1

ij |J1
ij ∈ F

}
+ d(F )

)
,

where d(F ) acts as the wasted time during the processing of batch F . From the
above expression of the F , we obtain that

Cmax(σ
′
) = |B1| + 1

2

(
∑

F∈B2

∑ {
p1

ij |J1
ij ∈ F

}
+

∑

F∈B2

d(F )

)

+ a

=
1
2

3∑

j=1

m∑

i=1

p1
ij +

1
2

(

|B1| +
∑

F∈B2

d(F )

)

+ a

= 3m(m + 1)A +
1
2

(

|B1| +
∑

F∈B2

d(F )

)

+ a.
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Since Cmax(σ
′
) ≤ t2, it follows that

|B1| + d(F ) + 2a ≤ 2m(m + 1)A + 2A.

Due to a + |B1| ≥ t1, d(F ) + a ≤ 2A, hence d(F ) ≤ 2A.
If there exists a batch F in σ

′
contains two jobs J1

i , J1
j of distinct types, from

the constructor of the jobs, d(F ) ≥ 4A − ai − aj > 2A. Thus every batch, which
includes two jobs in σ

′
, contains two jobs of the same type in the first class.

Let Sj ⊆ I be the subset of {J1
1,j, J

1
2,j , · · · , J1

m,j}, in which every job is processed
as a batch itself, j = 1, 2, 3. obviously, S1 ∪S2 ∪S3 = I and S1 ∩S2 ∩S3 = ∅. Then

Cmax(σ
′
) = max

{
∑

i∈S1

p1
i,1 +

∑

i∈S2

p2
i,2 +

∑

i∈S3

p3
i,3, 2m(m + 1)A

}

+
∑

i∈S1

p1
i,3 +

∑

i∈S2

p1
i,1 +

∑

i∈S3

p1
i,1

= 4m(m + 1)A + max

{
∑

i∈S1

ai −
∑

i∈S2

ai, 0

}

+
∑

i∈S2

ai +
∑

i∈S3

ai

= 4m(m + 1)A + max

{

2A −
∑

i∈S2

ai,
∑

i∈S2

ai +
∑

i∈S3

ai

}

≤ 4m(m + 1)A + A.

Accordingly, we can obtain two inequations as the following.

2A −
∑

i∈S2

ai ≤ A, (2)

∑

i∈S2

ai +
∑

i∈S3

ai ≤ A. (3)

Thus, due to the above inequalities (1) and (2), we have
∑

i∈S2
ai ≥ A and∑

i∈S2
ai ≤ A. So it follows that

∑
i∈S2

ai = A.
Then the PARTITION instance has a solution X = S1.

�

3 Concluding Remarks

In this paper, we address the problem of scheduling n jobs on a flexible batching
professor to minimize the total completion time. We will go to searching ecient
algorithms for this problem and researching the problem with other objective
(i.e. Tmax,

∑
Uj). Another extension to the model involves scheduling jobs on

m identical parallel machines.
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Abstract. This paper presents a guided multi-restart search (GMRS) algorithm 
for scheduling parallel machines in terms of global optimum. GMRS consists of 
a strategic guided local search phase and a phase that generates a beneficial  
restart point using the information acquired during the local search. The ex-
perimental results show that the proposed algorithm considerably improves the 
solution within a reasonable time. 

1   Introduction 

This paper considers the problem of scheduling jobs on parallel machines where the 
release times, due dates, and sequence-dependent setup times of jobs are taken into 
account. The objective is to minimize the maximum lateness of the jobs ( maxL ), 

which can give the customers the information on the upper limit of their due date 
lateness. To state the scheduling problem precisely, suppose that there are N  jobs to 
be scheduled in front of M  machines. When a total schedule is expressed as a set Π , 
the objective function of the scheduling problem is defined as  

},...,2,1|{)( NjLMaxΠLMinimize jmax ==  (1) 

where jjj dCL −= , and jC , jd are the completion time and due date of job 

),...,2,1( Njj = , respectively [1]. This scheduling problem is known as a strongly 

NP-hard problem [2].  
In order to generate an efficient schedule within a very reasonable time, this paper 

presents a scheduling algorithm called guided multi-restart search (GMRS), which is 
characterized by global optimization. GMRS does not provide only means of escaping 
from local optima, but also methods of breaking fresh solution space.  

In general, the performance of global search is largely affected by two factors. One 
is the intensification strategy - efficiency of the scheme to generate neighborhood 
schedules from the current schedule. The other is the diversification strategy - effi-
ciency of the scheme to explore unvisited regions throughout the solution space. In 
this respect, GMRS consists of two main phases: The first phase is an efficient local 
search heuristic that may employ tabu search, simulated annealing, or genetic algo-
rithm. This paper selects tabu search as a local search heuristic. The second phase on 
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which this study focuses is related to the diversification strategies that prevent search-
ing process from cycling, i.e., endlessly and exclusively revisiting the same set of 
solutions and guide the search to unexplored regions of the solution space. 

In case of tabu search, for example, diversification can be incorporated to some ex-
tent into long-term memory, which stores frequency information on the moves 
throughout the search. This measure, together with residence or transition frequency-
based memory structure, is used to avoid moves with high frequency and stimulate 
moves with low frequency [3,4]. In addition, frequency information within long-term 
memory may be used in multi-restarting mechanisms. However, due to the frequency-
based memory structure that stores only the information on the particular jobs related 
to a move regardless of whole solution status at the moment, those existing diversifica-
tion strategies are not strong enough to evade cycling during entire search process [3]. 

This study proposes a new diversification strategy that employs both a cycling pro-
tection technique and a guided restart technique. The cycling protection technique 
adopts a distance metric for measuring the dissimilarity between schedules and pro-
hibits moves from coming into the protection area set up by given dissimilarity, which 
is distance. In addition, the guided restart technique leads restart point to the attractive 
solution space based on previous trajectories and uses genetic operators (mutation, 
crossover) as a restart point generation scheme.  

Schoen [5] proposed global optimization methods consists of global phase and lo-
cal phase and showed how stochastic techniques coupled with deterministic local 
search methods can be successfully applied to solve moderately sized multimodal 
optimization problems. Merkle and Middendorf [6] presented an ant colony optimi-
zation (ACO) algorithm for the single machine total weighted tardiness problem and 
compare it to an existing ACO algorithm. They showed that the ants are guided on 
their way through the decision space by global pheromone information instead of 
using only local pheromone information. Ding et al. [7] tackled an optimal process 
sequence problem with a global optimization strategy based on multi-objective fit-
ness: minimum manufacturing cost, shortest manufacturing time and best satisfaction 
of manufacturing sequence rules. The hybrid approach proposed by [8] incorporated 
a genetic algorithm, neural network and analytical hierarchical process, however, 
had a lack of adaptability. Yang et al. [8] examined evolutionary computations for 
continuous global optimization. They presented an evolutionary programming algo-
rithm combined with macro mutation, local linear bisection search and crossover 
operators for global search. Simulated annealing was adopted to prevent premature 
convergence. 

To show the effectiveness of GMRS, the performance of GMRS is compared with 
that of RHP (rolling horizon procedure) proposed by Ovacik and Uzsoy [2] for the 
exactly same problem as this study using the benchmarking data given by Uzsoy [9]. 
The experimental results show that the proposed algorithm considerably improves the 
solution with reasonable CPU times.  

The remainder of this paper is organized as follows. Section 2 presents a descrip-
tion of the proposed algorithm with empirical results shown in Section 3. Section 4 
contains a conclusion. 
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2   Guided Multi-Restart Search (GMRS) 

This section introduces the working principle of the GMRS. Virtually, GMRS is com-
posed of a strategic guided local search phase and a phase that generates a beneficial 
restart point in terms of global optimum using useful information acquired during the 
local search.  

Let protection area ( PA ) denote the memory stack for forbidding jumping to re-
gions from which the searching may result in the previously visited local optima, and 

),( *ΠΠD  denote the distance between the two solutions Π  and *Π , then the algo-

rithm for GMRS can be summarized as: 

Step 1: (Initialization) Choose an initial solution Π . numberiterationcurrent = 0. 

+∞=optimalcurrent . ∅=PA  (Note: this means empty queue). 

Step 2: (Guided Local Search) Start local search from Π . Let *Π  be the local opti-

mum, however, *Π  must not be within the protection area. Insert >Π< d,*  in the 

protection area memory stack PA , where α×ΠΠ= ),( *Dd , where α  is a distance 

factor, 0>α , and usually set by experimental analysis. If optimalcurrent > *Π  then 
*Π=optimalcurrent . numberiterationcurrent = numberiterationcurrent + 1. If 

numberiterationcurrent ≥  criterionstopping , then stop. 

Step 3: (Restart Point Selection) From *Π , generate a new starting schedule Π′  
such that Π′  is not in the regions specified in PA  using random restart method or 
gene generation scheme. Let Π′=Π  and go to Step 2. 

In Step 1, a start point (initial schedule), Π  is chosen by earliest due date (EDD) 
rule and the protection area memory stack, PA  is initialized. Step 2 finds local opti-

mum *Π  through local search and sets up another new protection area where is dis-

tanced d  from *Π  by storing PA  with the attributes of the local optimum *Π  and 

the distance d , that is >Π< d,* . This means that every point whose distance from 

each local optimum *Π  in PA  is within d  must not be the target for local search. 
Therefore, the point to keep in mind here is that the local search should guide itself 
not to enter PA  during entire local search process. This study employs tabu search as 
a local search heuristic designated to use insert move operator and tabu list of size 7 
according to the suggestion by Laguna et al. [10]. Step 3 generates a restarting point 
that is not located in PA .  

There is a multi-start algorithm, consisting of repeatedly starting local searches 
from randomly chosen starting point, which is one of global search algorithms. Possi-
bly the algorithm, if correctly tuned, will lead to global optimum. However, its com-
putational performance seems to be quite low [11]. It is a trade-off between random 
restart and guided restart using previous search history that should be considered here. 
In order to reflect the trade-off on the restarting point selection mechanism, this study 
adopts a gene generation scheme, which makes use of specially devised forms of 
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mutation and crossover to assure that restarting point (offspring) will receive informa-
tion shared by good previous (parent) solutions. This gene generation scheme not only 
incorporates a type of intensification based on consistency and provides an interesting 
area for investigation, but also guarantee a global view of search. A detailed descrip-
tion of the gene generation scheme for parallel machines scheduling is given in the 
literatures [12, 13]. 

2.1   Protection Area (PA) 

In order to prevent searching process from endlessly executing the same sequence of 
moves efficiently, we need a criterion to decide whether or not every solution ob-
tained during a cycle of local search is out of PA  and can be selected a local opti-
mum. In this respect, this paper presents dissimilarity measure that is an extension of 
Tanimoto distance [14] between two schedules.  

Given two schedules Π  and Π′ , let 
m

nΠ  denote the number of adjacent pairs in 

the m th machine of the schedule Π  and let ′ΠΠ mm
n

,
 denote the number of shared 

adjacent pairs in the m th machine of the schedule Π  and the schedule Π′ . The dis-
tance between Π  and Π′ , ),( Π′ΠD  is defined as: 

∑ ∑
= = ′ΠΠ′ΠΠ
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For example, lets consider two cases of single machine schedule ( M = 1). 

Case 1) Π  = {1, 2, 3, 4} and Π′  = {1, 3, 2, 4} 

Case 2) Π  = {1, 2, 3, 4} and Π′  = {1, 2, 4, 3} 

Intuitively, the similarity between two schedules in case 2 is greater than that between 
two schedules in case 1. We can prove this using the equation (2). For case 1, 

1Πn = 3 

since there are 3 adjacent pairs (1, 2), (2, 3), and (3, 4) in Π . ′Π1
n = 3 since there are 3 

adjacent pairs (1, 3), (3, 2), and (2, 4) in Π′ . ′ΠΠ 11,
n = 1 because there is 1 shared adja-

cent pair (2, 3) between Π  and Π′ . The distance ),( Π′ΠD = (3+3-2)/(3+3-1) = 0.8.  

In the same manner as case 1, for case 2, 
1Πn = 3, ′Π1

n = 3, and ′ΠΠ 11,
n = 2 because there 

are 2 shared adjacent pairs (1, 2) and (3, 4) between Π  and Π′ . The distance 
),( Π′ΠD = (3+3-4)/(3+3-2) = 0.5. Therefore, the similarity in case 2 is greater than that 

in case 1 since the nearer distance, the more similar. 

3   Computational Results 

The RHP proposed by Ovacik and Uzsoy [2] mentioned in Section 1 is used as a 
comparative algorithm and the scheduling data for this experiment are the same data 
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that Ovacik and Uzsoy created [9]. The benchmarking data are composed of 1800 test 
problems, each of which is characterized as different R  value, the number of jobs, 
and the number of machines. Here, R  is the release time range parameter that decides 
the release times of the jobs. Of the test problems, those with 150 jobs and 4 machines 
were used for this experiment. The algorithms proposed in this paper including RHP 
are all coded using the C++ language and run on PentiumⅣ 2.54 GHz machine.  

Table 1. Experimental design 

Design parameter Values 
Distance factor (α ) 0.2, 0.6, 1.0, 1.4 

Restart method RS1, RS2, RS3 

Restart number 20, 40, 60, 80,100 

As a yardstick for estimating the quality of the solutions, this study defines a com-
parison value as follows: 

RHPbyobtainedL

GMRSbyobtainedL
valueComparison

max

max=  (3) 

Experimental design is given as Table 1, where distance factor (α ) has 5 different 
values, restart method 3 ways, and restart number 5 values, respectively. Restart 
method RS1 means random restart, RS2 is a method that generates a new start posi-
tion with 1% mutation (random change) of current local optimum, and RS3 decides a 
new start position with crossover between recent and current local optimum. RS2 and 
RS3 could be regarded as a kind of guided method. 

The performance of GMRS coupled with the three restart methods was evaluated 
and shown in Table 2, where the restart number is 100. In this table, GMRS-restart 
method (e.g., GMRS-RS1) refers to the GMRS that employs the restart method to 
generate a start position. In addition, )(RAvg  means the average value of comparison 

values when R  is given. Table 2 informs that the solution quality of GMRS-RS2 and 
GMRS-RS3 is much better than that of GMRS-RS1 and Table 3 shows that GMRS 
methods considerably improve solution compared with RHP heuristics within reason-
able computation time.  

Table 2. Average comparison values for performance comparison with RS1, RS2, and RS3 
(restart number = 100) 

  GMRS-RS1 GMRS-RS2 GMRS-RS3 
α 0.2 0.6 1.0 1.4 0.2 0.6 1.0 1.4 0.2 0.6 1.0 1.4 

Avg(0.2) 0.892  0.914  0.877  0.892  0.779  0.738  0.678  0.684  0.758  0.725  0.701  0.682  
Avg(0.6) 0.885  0.887  0.995  0.886  0.776  0.730  0.698  0.683  0.752  0.720  0.718  0.676  
Avg(0.10) 0.896  0.886  0.881  0.886  0.784  0.737  0.690  0.687  0.762  0.721  0.688  0.677  
Avg(0.14) 0.888  0.905  0.925  1.000  0.776  0.740  0.692  0.703  0.754  0.727  0.691  0.693  
Avg(0.18) 0.894  0.876  0.896  0.997  0.781  0.720  0.692  0.693  0.760  0.712  0.696  0.688  
Avg(*) 0.891  0.894  0.915  0.932  0.779  0.733  0.690  0.690  0.757  0.721  0.699  0.683  
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Table 3. Improvement rate and average CPU times (seconds/problem) 

 Improvement rate Average CPU times 
RHP - 59.62 

GMRS-RS1 10.15 % 241.72 
GMRS-RS2 38.30 % 237.91 
GMRS-RS3 38.85 % 242.52 

Comparison value

0.700

0.760

0.820

0.880

0.940

1.000

20 40 60 80

Restart number

RS1
RS2
RS3

100

 

Fig. 1. Effect of restart number on the solution quality 

From Tables 2 and 3, we can observe two facts. One is that the restart method 
plays an important role in improving the solution. This fact gives us useful informa-
tion that the guided restart methods (RS2 and RS3) generate time-effective solutions. 
The other is that solution quality depends on the distance factor. Therefore, it is clear 
that the distance factor is an important decision parameter to be found. 

The relationship between the restart number and the quality of the solution is 
shown in Fig. 1, where each comparison value corresponds to the values in Table 2. 
The results show that, particularly in RS2 and RS3, the comparison values are 
enhanced significantly up to a certain value from which the improvement is hardly 
noticeable. The blocking rate of GMRS with different restart methods, as shown in 
Fig. 2, increases in proportion along with the values of the distance factor. From this 
figure and Table 2, we can see that the blocking rate is not related to the improvement 
rate directly. As a consequence, GMRS-RS2/RS3 has been proved, through the 
experiment, to be an effective combination in terms of the quality of solution. 

Finally, as illustrated Fig. 3, this experiment attempted to trace all moves during 
whole search, analyze the characteristics of the solution space, and inspect the relative 
location of initial, first restarting, and best solutions with respect to distance. The 
distance rate of x axis of Fig.3 means a percentage ratio of distance between a solu-
tion and the best solution to distance between the best solution and farthest solution 
from the best solution. From Fig. 3, we can see the problem space tackled in this 
paper has very rugged surface since there are a lot of good solutions in every distance 
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Fig. 2. Blocking rate according to distance factor 
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Fig. 3. Global search trajectory and relationship between distance rate and Lmax 

 

rate, which makes the problem difficult to be optimally solved. We can also observe 
GMRS method went through very long distance to get the best solution via 1. the 
initial solution and 2. the restarting solution, which means the protection area (PA) 
incorporated in GMRS method plays a key role in exploring the whole space without 
trapped in local optima. 
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4   Conclusions 

This paper proposed a guided multi-restart search (GMRS) algorithm, which is char-
acterized by global optimization. GMRS is composed of a strategic guided local 
search phase and a phase that generates a beneficial restart point in terms of global 
optimum, using the information acquired during the local search. To show the effec-
tiveness of the proposed algorithm, this study conducted an experiment with bench-
marking data. The experimental results showed that the proposed algorithm consid-
erably improved the solution with reasonable CPU times. An application of the algo-
rithm to other practical scheduling problems such as flexible flow line and job shop 
remains to be further investigated. 
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Releasing and Scheduling of Lots in a Wafer Fab 
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Abstract. In this paper, we address the problem of both releasing and schedul-
ing of lots in a wafer fab. In the lot release problem, we determine the number 
of lots of different products to be released in each period of a planning horizon 
in order to minimize total tardiness. The problem of the scheduling of lots at 
various workstations is modeled as a mathematical program for the objective of 
minimizing the cycle times of the lots and is solved by the Lagrangian relaxa-
tion method. Computational results are presented that exhibit that our method-
ology constantly generates better solutions compared to those obtained by  
commonly-used dispatching rules. 

Keywords: wafer fab, lot releasing, scheduling, Lagragian relaxation. 

1   Introduction and Problem Statement 

Wafer fabrication is the most technologically complex and capital intensive phase in 
semiconductor manufacturing.  The high cost of wafer fabs (over $3 billion for the 
new 300-mm factories) and the need to pay them off quickly means that effective 
strategies to operate these facilities are absolutely essential.  The operational control 
problem that we address in this paper can be stated as follows:  Given a set of lots 
waiting to be released into a fab or for loading in a processing area, determine the 
number of lots to release into the fab as well as the order in which to process the lots 
at the processing areas so as to minimize the performance-related measures of average 
cycle time and job tardiness. 

There are the following key features which need to be incorporated in the problem 
formulation and solution methodology. A lot consists of a certain number of wafers 
held in a cassette.  We define a job in a wafer fab to be a lot of a product.  A work or-
der consists of a number of wafers ordered by a customer.  The number of lots in each 
work order is assumed known which, in turn, is determined by taking into considera-
tion the yield rate. The due date for a work order is the date by which it should be 
completed.  The planning horizon is the time duration that is sufficient to complete all 
the work orders in the fab and its calculation is based upon the capacity of the fab.  
The entire planning horizon is divided into planning periods.  The duration of each 
planning period is assumed to be twenty-four hours. 

                                                           
* Corresponding author. 



 Releasing and Scheduling of Lots in a Wafer Fab 109 

A station family consists of a number of workstations.  The processing step of a lot 
can be performed at any of the workstations (machines) of a station family.  Some 
processing areas in a wafer fab, such as etching, consists of batch processing ma-
chines, where a number of lots are processed simultaneously, as a batch.  A wafer has 
to visit the photolithography processing area numerous times to have all the layers of 
circuitry fabricated.  The fact that a lot visits a processing area more than once, is 
what is called the reentrant product-flow in a wafer fab.  Lot-dedication scheme refers 
to a policy adopted in the photolithography processing area of certain wafer fabs, 
where the photolithography processing operations on all (or critical) layers of a wafer 
are processed on the same workstation where the first layer of that wafer was proc-
essed.  Preventive maintenance schedules are drawn up months in advance, and a 
workstation is not available during that time.  But, then, there are unscheduled down-
times as well during which a workstation breaks down. 

In this paper, we approach this problem in two steps.  First, the number of lots of 
different products to be released into the system during each planning period is de-
termined such that the total tardiness of the product orders is minimized. Second, the 
schedules of these lots for use in the processing areas are determined so that the cycle 
time of each lot released into the system is minimized.  An integer linear program-
ming model is formulated for the lot release, tardiness problem and an algorithm is 
presented for obtaining good solutions.  The scheduling problem is formulated as a 0-
1 integer linear model. We successfully apply Lagrangian relaxation on a carefully 
chosen set of constraints and present a Lagrangian heuristic for the scheduling of the 
lots in each period of the planning horizon. 

The interest in the production planning problem of semiconductor manufacturing 
began in the later 1980’s. Various techniques and models have been proposed for this 
problem in the literature (see Uzsoy, Lee and Martin-Vega [1][2]). These include: a 
linear programming (LP) and simulation-based planner (Hung and Leachman [3]); a 
two-step LP-based approach (Lee, Yea and Kim [4]); and a hierarchical framework 
(Grovin [5]). There have been several approaches proposed in the literature for the 
scheduling problems encountered in a wafer fab (see Uzsoy, Lee and Martin-Vega 
[1][2]). The most common among these is the use of dispatching rules (Wein [6], Kim 
et al. [7], and Lu, Ramaswamy and Kumar [8]). However, mathematical program-
ming-based approaches have not been that common even though they have the capa-
bility of providing optimal or near-optimal solutions. Some efforts in this regard have 
been reported by: Sarin et al. [9], Graves et al. [10], and Mehta and Uzsoy [11]. In 
this paper, we attempt to use such an approach for the problem on hand. Effective al-
gorithms are designed to circumvent their computational intractability.  

The rest of this paper is organized as follows. In section 2, we present the lot re-
lease problem to minimize tardiness of job orders, and a two-phase algorithm to ob-
tain good solutions is developed. This is followed by the presentation of a model for 
the scheduling problem in section 3. A Lagrangian relaxation-based algorithm for the 
solution of this problem is also described in this section.  In section 4, results of the 
experimentation conducted on the proposed solution methodologies for both of these 
problems are presented.  Lastly, concluding remarks are made in section 5. 

Before proceeding further, we present the following assumptions employed 
throughout this paper:  (1) the wafer fab produces multiple products; (2) a few station 
families consist of parallel machines; (3) the parallel machines in a station family are 
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identical in all aspects; (4) the processing times for all processing steps are determi-
nistic; (5) the setup time of each processing step is included in its processing time; (6) 
the buffer size at any workstation is finite; (7) a due date is provided for every order 
of a product; (8) all parameters are measured after the system has reached steady 
state; and (9) the products are compatible at a batching station, and hence, can be 
processed together. 

2   The Lot Release Problem to Minimize Tardiness of Job Orders 

2.1   Mathematical Model for the Lot Release Problem 

We formulate this problem as an integer programming model, which determines a 
number of lots for each work order that is to be released into the system, in each time 
period of the entire planning horizon, so that the total tardiness of the work orders is 
minimized. 

Let f, g, t and k be the subscripts representing a product, the work order number of 
a product, a single time period, and a station family, respectively; NLfg denote the total 
number of lots in the work order g of product f; Nfgt be the number of lots of work or-
der g of product f released into the system during time period t; BNft represent the 
maximum number of lots belonging to product f that can be released into the system 
during each time period because of a constraint on system capacity; F be the number 
of products; Wf be the number of work orders of product f; M be the number of station 
families; T be an upper bound on time required to complete all the work orders; bk de-
note the number of parallel machines in the station family k; dfg designate the due date 
of work order g of product f; d’fg represent the modified due date of work order g of 
product f; Cfg be the completion time of work order g of product f; TDfg designate the 
tardiness of work order g of product f; Xfgt = 1, if work order g of product f is released 
into the system during time period t, and = 0 otherwise; rfk represent the number of re-
entries of product f into station family k; sfk be the processing time of each step of 
product f on station family k (in hours); BLTf denote the base lead time of a lot of 
product f (the sum of its processing times over all the steps); ht be the number of hours 
in time period t; UTfg be an upper bound on the time required to complete work order 
g of product f; and LTfg be a lower bound on the time required to complete a work or-
der g of product f.  We assume each time period t to be of equal time duration, repre-
senting one day.  The wafer fab is assumed to run continuously for three shifts in a 
day, and hence, the time available in a single time period is 24 hours.  Therefore, ht = 
24 hours for all periods. BNft is the same for all t and, thus, can be rewritten as BNf . 

Also, modified due date, ffgfg BLTdd ∗−= ρ' where ρ is the lead time factor for 

the last lot of a work order g of product f. 

Problem P1:  Min  ∑∑
= =

F

f

W

g
fg

f

TD
1 1

 

(1) Tardiness definition. 

,' fgfgfg dCTD −≥  f=1, 2, … F, g = 1, 2, … Wf (1) 



 Releasing and Scheduling of Lots in a Wafer Fab 111 

(2) The completion time of a work order g of product f is equal to the time period t   
in which the last lot of the work order g is released into the system. 

 fgtfg XtC ∗≥ ,  f=1, 2, … F, g = 1, 2, … Wf, t=1, 2, … T (2) 

(3) The number of lots of a work order g of product f released into the system in 
time period t is less than or equal to the maximum number of lots of product f, 
which can be processed by the system in time period t. 

,* fgtftfgt XBNN ≤              f=1, 2, … F, g = 1, 2, … Wf, t=1, 2, … T (3) 

(4) The sum of all the lots of a work order belonging to a product that are released 
into the system, over the planning horizon, is equal to the total number of lots in 
the work order. 

fg

T

t
fgt NLN =∑

=1

,     f=1, 2, … F, g = 1, 2, … Wf                         (4) 

(5) The total number of lots, over all the work orders, released into the system 
should satisfy the capacity of each station family in each period. 

 ,
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∗≤∗∗∑∑
= =

   k=1,…, M  and t=1,…,T,       (5) 

TDfg ≥ 0, Cfg, Nfgt ≥ 0 and integer; and Xfgt = 0,1, f=1,…,F, g=1,…,Wf , and 
t=1,…,T.   

 

Note that the maximum number of lots of a product f that can be processed in a 
single time period, t, is equal to the maximum number of lots processed by the bottle-
neck station of the product, and can be computed as follows.  The maximum number 
of lots of a product f that can be processed in a time period on station family k,  
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Then, 
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f MBN min= ,            f=1,…,F,  k=1,…, M  and t=1,…,T        (7) 

Therefore, an upper bound and a lower bound on the time required for completing 
a work order g of product f are as follows: 
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Note that ⎡ ⎤x and ⎣ ⎦x represent the smallest integer greater than x and the largest 

integer smaller than x, respectively.  

2.2   A Two-Phase Algorithm for the Lot Release Problem 

Problem P1 can be viewed as a k station-family tardiness problem. Since the single 
machine tardiness problem is NP-hard (Pinedo [12]), so is Problem P1. Therefore, to 
curtail the computational effort, we determine an initial solution via an extension of 
the single machine tardiness problem, and then, use it in the above model to generate 
good solutions in a reasonable amount of time using CPLEX.  The initial solution is 
generated in two phases as follows. 

In Phase I, we apply the Wilkerson and Irvine’s (W-I) algorithm (as described in 
Baker [13]) of the single machine tardiness problem to an aggregated version of the 
parallel machine environment of a wafer fab (call it a virtual single machine) and re-
lease the work orders one-at-a-time as follows: 

Step 1.  Consider the entire manufacturing system as a single machine. 
Step 2.  Consider each work order as a single job represented by fg. 
Step 3.  Calculate the modified due date d’fg and the upper bound UTfg on the time 

required to complete work on work order g of product f. 
Step 4.  Consider UTfg as the processing time of a job on the virtual single machine. 
Step 5. Apply the W-I algorithm to this environment to minimize the tardiness of 

the aggregated problem and determine the sequence in which to process 
the jobs (work orders) on the virtual single machine. 

The work orders are ranked according to the sequence generated by the W-I algo-
rithm.  

In the solution generated by Phase I, each job f’g’ will begin processing after the 
completion of the previous job fg.  The completion time t’ of the job fg is the time pe-
riod in which the last lots of the work order fg are released into the system.  The next 
job f’g’ will start processing only in the time period t’+1.  As a result, there may be 
capacity available in time period 'tt ≤  for processing lots from the work order f’g’, 
but this capacity is not utilized.  Hence, the solution obtained in Phase I may involve 
many capacity “gaps.”  We remove these capacity gaps in Phase II by releasing the l-
ots from more than one work order at the same time as follows. 

Step 1.  (Initialization) Rank the work orders (in ascending order) according to the 
schedule generated by the W-I algorithm (in Phase I). 

Step 2.  In the first time period, take the first ranked job (work order g of product f) 
and release the maximum number of lots (BNf) of product f for the work 
order g into the system.   

Step 3.  Go through the schedule, and select the least ranked work order g’ of prod-
uct f’ over all the remaining work orders. 

Step 4.  Release as many lots of the work order g’ of product f’ as possible so that 
the system stability is not violated (that is, the system capacity is not ex-
ceeded).   
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Step 5.  Repeat Steps 3 and 4 until all the work orders of every product have been 
evaluated for their release into the system such that the system capacity is 
not exceeded. 

Step 6.  Set t = 2.    
Step 7.  For the tth time period (t=2,3,4,….,T), release as many lots as possible of 

the least ranked work order g’’ of product f’’ into the system. 
Step 8.  Repeat Steps 3, 4, and 5. 
Step 9.  Set t = t+1.  
Step 10. Repeat Step 7, 8, and 9 until time period T or when no lot of any work or-

der remains to be released in the system. 

Besides the initial solution determined above, we also use valid inequalities (see 
Shenai [14]), based on a dominance property among the jobs, in Problem P1. Both of 
these enhance the effectiveness of the solution of P1 by the CPLEX optimization 
software.   

Above, we have assumed a fixed set of work orders on-hand (static case).  How-
ever, if new orders are accepted in the middle of the planning period (dynamic case), 
then P1 needs to be solved frequently, taking into consideration the current status of 
the existing work orders and information about the new work orders.   

3   Scheduling of Lots in a Wafer Fab 

3.1   Mathematical Model for the Lot Scheduling Problem 

Next, we present a mathematical model that is based on the flow approach (Weiss 
[15]) and is implemented stage by stage.  Each stage is a planning period for which 
we completely solve the scheduling problem.  The duration of this planning period 
can be taken to be a day while the duration of a time unit in the model is taken as a 
fraction of an hour (say 1/10th of an hour).  This is dictated by the fact that supervisors 
need daily schedules to run the fab, and also, daily information about the availability 
of resources is known with certainty (except, of course, for unscheduled downtime).  
We use the following notation in addition to the one presented before.  Let i be the 
subscript representing the lot number; If represent the total number of lots of product f 
in the system; j be the subscript representing the processing step of the lot; Jfi be the 
set of processing steps in the route of the lot i of product f that will be processed (un-
der static lot release policy) or may be processed (under dynamic lot release policy) in 
a single planning period; bk be the number of workstations in station family k; t be a 
subscript representing an individual time unit at which the lot is to be scheduled; Xfijkbt 
= 1, if the processing step j of lot i of product f is scheduled on station b of station 
family k at time unit t, and = 0, otherwise; I(k) be the set of operations (combinations 
of f, i and j) that can be processed on station family k; pfijk be the processing time of 
step j of lot i of product f on station family k; T represent an upper bound on the time 
horizon.  T = 240 time units; B represents the set of batching machines; Uk be the 
maximum batch size at station family k; Lk be the minimum batch size at station fam-
ily k; K(f,i,j) represent the set of station families on which operation j of lot i of prod-
uct f can be processed; Yfij = 1, if processing step j of lot i of product f is scheduled in 
the planning period, and = 0, otherwise.  (Note:  The value of every Yfij is known a 
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priori for a planning period in the static lot release case while it is not known for the 
dynamic lot release case and is one of the variables to be determined.) 

We consider the objective of minimizing, over all the lots, the completion time of 
those processing steps that are scheduled in the corresponding time period. 

Problem P2: Min  ∑∑∑∑∑∑ ∑ ∑∑
= = ∈= = ∈ ∈ = =
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where μ is a penalty for not scheduling the job as early as possible;  μ ≥ T. 
(1) Each step of a job must be processed only once or not at all. 
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(2) Step j+1 of any lot must start only after the completion of step j of that lot. 
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    Also, for the Y variables,  

 1+≤ fijfij YY ,              f = 1, 2, …, F,  i = 1, 2, …, If, fiJj ∈∀  (11) 

(3) Lot i of a product should be scheduled before lot i+1 of that product at any step 
j. The lots are numbered according to the chronological order of their release 
into the wafer fab. 
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(4) Lot i+1 of a product can be scheduled at any step j only if lot i is scheduled at 
that step. 

 jfifij YY 1+≤ ,           f = 1, 2, …, F,  i = 1, 2, …, If-1, fiJj ∈∀     (13) 

(5) All stations, except for the batching stations, have a capacity of one.  At any 
given time, the number of lots at a non-batching machine must be less than or 
equal to one. 
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where, yfijkbt is a column vector with T+1 elements and has zero entries except 
from the tth to the (t+pfijk–1) element, for which the entry is one, and 1 is a col-
umn vector with T+1 elements consisting of ones. 

(6) At batching stations, a number of jobs can be processed simultaneously.  A 
batching machine can start processing the lots once the minimum number of 
lots required to start its processing is reached.  This capacity constraint can be 
captured by a constraint that is identical to constraint (5).  

 DLCXy kfijkbt

T

t kIjif
fijkbt ∗≥∗∑ ∑

= ∈0 )(,,

 ,  ,Bk ∉∀  ,kbb ∈∀  (15) 

where, LCk is a column vector with T+1 elements with each element equal to 
Lk, where Lk is the minimum batch size at the batching machine; and D = 1, if a 
batch of size at least Lk is being processed at the batching station k, and = 0, 
otherwise. 

(7) A batching station can only process as many lots simultaneously as the maxi-
mum batch size.  
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where, UCk is a column vector of T+1 elements with each element equal to Uk, 
where Uk is the maximum batch size at the batching machine k. 

(8) At a batching machine, a subsequent operation must precede the previous op-
eration by at least the processing time of the previous operation.  
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(17) 

where, α and β are binary variables, K1 and K2 are non-negative real variables, 
and α + β ≤ 1, K1 ≤ β * T, K2 ≤ α * T 

(9) Other constraints, such as lot dedication, preventive maintenance, handling of 
hot lots and due date for the last lot of a work order, are also incorporated in 
this model. More details about these constraints can be found in Shenai [14]. 

3.2   A Lagrangian Relaxation-Based Algorithm 

We apply the Lagrangian relaxation-based approach that relies on subgradient optimi-
zation (see Fisher [16]) to the problem on hand. The best results were obtained by re-
laxing constraint set (2). However, the solution obtained as a result needs to be ad-
justed in that the operations of a job should be arranged in a sequential manner. 
However, the sequence of processing steps for a lot is known from the route of that 
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lot, and thus, this adjustment can be made easily.  Due to the early start time con-
straints, it can easily be shown that, at every stage of the Lagrangian heuristic, at least 
one processing step is always feasible.  Consequently, we can generate a feasible so-
lution to the problem by fixing the current feasible variables and repeatedly solving 
the remaining truncated Lagrangian problem. 

4   Computational Results 

Consider a wafer fab consisting of 6 products and 10 station families and 25 worksta-
tions, which is slightly bigger than the Hewlett-Packard Technology Research Center 
fab (TRC fab) as presented in [5]. Each product consists of 2 to 4 work orders and the 
number of lots in each order ranges from 100 to 250. The lot release problem is 
solved for several combinations of the number of products and the number of ma-
chines.  The results are presented in Table 1. Note that the solutions generated by the 
proposed solution methodology are close to optimal while requiring only a fraction of 
the computational time taken to obtain the optimal solutions.  As indicated, for one of 
the instances, the optimal solution could not be obtained within 10 hours of computa-
tional time. 

Table 1.Comparison of solution quality and computational time between the proposed solution 
methodology and the optimal solution 

(Number of 

products)/ 
(Number of  
machines)/  
(Number of  
work or-
ders) 

2-Phase 
approach 
(Tardiness 
per Work 
Order) 
(days) 

Optimal 
solution 
(Tardiness 
per Work 
Order) 
(days) 

Computational 
time for 
2-phase 
Approach (a) 
(sec) 

Computational 
time for 
optimal 
Solution (b) 
(sec) 

Ratio 
of 
solution 
times 
(b/a) 

6/25/19 5.2 5.0 386.97 106309.34 274 
5/27/17 19.2 * 1648.85 – – 
4/24/13 1.0 0.8 103.33 110646.26 1074 
3/21/11 2.5 0.5 88.13 5494.55 62 
2/18/ 9 11.6 11.6 5.47 123.46 22 

* Optimal solution could not be obtained within 36,000 seconds (10 hours) of computation 
time. 

Three experiments were conducted to study the performance of the Lagrangian 
heuristic for the scheduling of jobs in a wafer fab.  All the experiments are performed 
on systems that have reached a steady state.  A system has a starting WIP, and hence, 
is said to be “full”.   

The performance measures used to evaluate the solutions are the average and stan-
dard deviation of the cycle time.  As our experiments involve multiple products, the 
cycle time of each product type is computed separately.  The solution obtained by the 
Lagrangian heuristic is compared with the solution obtained by using the following 
six standard dispatching rules available in the literature: First In First Out (FIFO), 
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Least Balance Ahead (LBA), Least Lots Ahead (LLA), Least percentage of process-
ing time remaining (LPR), Least Slack (LS), and Least Time Remaining (LTR). The 
Lagrangian heuristic is denoted as LAG. 

Experiments 1 and 2 use the same wafer fab system, and are conducted to study the 
performance of the Lagrangian heuristic in a wafer fab in which different products in 
the system have different routes and processing times, each product passes through 
the same bottleneck station, and the product mix that are loaded into the system is dif-
ferent for each planning period. Experiments 1 and 2 differ in the ways the lots are re-
leased into the system. Experiment 3 is conducted to study the performance of the La-
grangian heuristic in a wafer fab in which different products pass through different 
bottlenecks. These experiments generate lot schedules for a time period of 3 or 4 
days. This is due to the fact that fab supervisors need daily lot schedules to run the fab 
and lot schedules for a longer time period are not necessary. The problem data that we 
used was obtained from a small wafer fab located in Roanoke, Virginia, and is pre-
sented in Shenai [14].  

In Table 2, the average and the standard deviation of the cycle times given by the 
Lagrangian heuristic is compared with the corresponding values obtained by using the 
 

Table 2. Summary of results of Experiment 1(cycle time: hours) 

Product 
# 

Cycle time FIFO LBA LLA LPR LS LTR LAG 

1 AVG 39.97 38.15 38.15 37.92 37.89 37.90 37.75 
 STD DEV 0.12 0.13 0.13 0.15 0.15 0.16 0.15 

2 AVG 40.23 38.15 38.15 37.37 39.33 37.37 37.48 
 STD DEV 0.34 0.32 0.32 0.33 0.31 0.33 0.32 

Lot completed 26 27 27 27 27 28 28 

Table 3. Summary of results of Experiment 2 

Product 
# 

Cycle time FIFO LBA LLA LPR LS LTR LAG 

1 AVG 41.32 41.47 40.58 40.68 39.07 43.51 40.4 
 STDDEV 4.45 6.58 5.63 6.28 5.25 6.22 5.55 

2 AVG 35.33 33.75 33.97 36.2 37.99 29.88 30.92 
 STDDEV 4.43 4.01 4.0 6.90 6.27 1.4 2.33 

Lots completed 24 24 24 25 26 26 26 

Table 4. Summary of results of Experiment 3 

Product 
# 

Cycle time FIFO LBA LLA LPR LS LTR LAG 

1 AVG 40.71 41.16 42.67 38.45 43.08 38.5 39.61 
 STD DEV 6.01 5.93 7.03 5.37 3.57 6.12 6.41 

2 AVG 47.05 42.70 44.55 46.62 47.5 46.1 43.38 
 STD DEV 6.33 4.78 3.73 5.37 4.99 3.99 4:11 

Lots completed 25 26 26 26 21 25 25 
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standard dispatching rules. The best results corresponding to each performance meas-
ure for each product are shaded. Similarly, the summary of results for Experiments 2 
and 3 are presented in Tables 3 and 4. 

It is clear from the above results that none of the scheduling rules dominates the 
others.  However, the cycle times obtained by the Lagrangian heuristic are quite close 
to the least cycle time for each product.  In all cases, the Lagrangian heuristic is not 
biased towards a product and provides a good solution (cycle time) for each product.  
This is shown in Table 5 where the ratios of the cycle times obtained for each product 
and for each scheduling rule in each experiment to the best value among them are 
shown.  The bottom row provides the average value over all the experiments.  This 
value is the smallest for the Lagrangian heuristic. 

Table 5. Comparison of ratios of the cycle time obtained for each product and for each schedul-
ing rule in each experiment to the best cycle time among them in each experiment  

Experiment Product FIFO LBA LLA LPR LS LTR LAG 
1 1 106% 101% 101% 100% 100% 100% 100% 
1 2 108% 102% 102% 100% 105% 100% 100% 
2 1 106% 106% 104% 104% 100% 111% 103% 
2 2 118% 113% 114% 121% 127% 100% 104% 
3 1 106% 107% 111% 100% 112% 100% 103% 
3 2 110% 100% 104% 109% 111% 108% 102% 
Average 109% 105% 106% 106% 109% 103% 102% 

5   Concluding Remarks 

In this paper, we have addressed both the lot release and scheduling problems of a 
wafer fab.  The lot release problem determines the work orders for release into the 
wafer fab in each period of a planning horizon in order to minimize the total tardiness.  
The proposed solution methodology provides good solutions within a reasonable 
amount of computation time. 

The scheduling problem for minimizing the cycle time of the lots released into the 
wafer fab is formulated as an integer program to capture specific features of a wafer 
fab.  A Lagrangian relaxation-based method is developed for solving this problem.  
Experiments are conducted under different sets of conditions that are encountered in a 
wafer fab.  The Lagrangian heuristic consistently generates good solutions for the 
scheduling problem.  The cycle time for each product generated by the Lagrangian 
heuristic is closer to the minimum cycle time of that product than that generated by 
the dispatching rules. 
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Abstract. Packet scheduling in networks with quality of service con-
straints has been extensively studied as a single criterion scheduling
problem. The assumption underlying single criterion packet scheduling
is that the value of all packets can be normalized to a single scale, even
in cases when packets have different requirements. We demonstrate that
this approach can lead to inefficient utilization of network resources.

To improve network efficiency, we model packet scheduling as a mixed
criteria scheduling problem where there are two distinct sets of jobs:
deadline jobs which represent real-time packets in a network and flow
jobs which represent other packets in the network. As the names imply,
the jobs in these two sets differ by the criteria associated with them. For
this problem, the flow jobs are scheduled to minimize the sum of their
flow times, and the deadline jobs are scheduled to maximize the value of
jobs that complete by their deadlines.

We demonstrate that even when there is only a single deadline job, this
mixed criteria scheduling problem is NP-Complete. We give a polynomial
time optimal algorithm Slacker for the variant where all jobs have unit
size and the value of deadline jobs processed by the deadline must be
maximized. Given this constraint Slacker minimizes the total flow time.
Furthermore, we show that online Slacker is optimal for flow time while
being 2-competitive with respect to the deadline jobs when compared to
an optimal algorithm like Slacker that maximizes the value of deadline
jobs.

1 Introduction

We investigate the packet scheduling problem in a network with quality of service
(QoS) considerations. Packet scheduling in QoS networks has been extensively
studied as a single criterion scheduling problem [2,3,6,8,10,13,16,17,19]. Typi-
cally, each packet has a value or weight, and the goal is to maximize the value of
successfully transmitted packets. Constraints on successful packet transmission
include a finite buffer size, packets may need to be transmitted in first in first out
order, and/or deadlines on packets. The assumption underlying single criterion
packet scheduling is that the value of all packets can be normalized to a single
scale.

We suggest that this assumption about packet values is not always valid.
Networks such as the internet support a variety of applications, each with their
own requirements. A video conferencing application requires real-time delivery
guarantees for each of its packets while a file download application only seeks to

M.-Y. Kao and X.-Y. Li (Eds.): AAIM 2007, LNCS 4508, pp. 120–133, 2007.
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minimize the arrival time of the entire file. It is not obvious that fixed values or
weights can be assigned to packets with different requirements.

For example, consider the following two scenarios. In scenario 1, there is one
flow job of size x available at time 0, and there is a stream of y unit size video
packets arriving one per time unit starting at time 0 with relative deadlines of
x + 1. Scenario 2 is identical except there is a second video stream of x unit size
video packets arriving one per time unit starting at time 0 where each packet
must be delivered immediately upon arrival. In scenario 1, the optimal solution is
to process the flow job first for a total flow time of x and then process the packets
of video stream 1 delivering all packets by their deadlines. In scenario 2, assuming
that completing jobs by their deadlines is more important than minimizing flow
time when there is a conflict, the optimal solution is to process the second video
stream first, then process the first video stream, and finally process the flow job
for a total flow time of y + 2x. However, given a fixed priority scheme, the flow
job packets will either always be scheduled before or after those of video stream
1. The typical assumption is that the flow job packets would have low priority.
In scenario 1, this leads to a flow time of y + x which is unnecessarily high.

To gain more insight into the packet scheduling problem, we will examine
mixed criteria formulations of the packet scheduling problem. In a mixed criteria
scheduling problem, there is a mixture of job types. All jobs of the same type
should be evaluated using the same criterion such as total flow time, but different
job types might use different criteria. In the case of packet scheduling, jobs with
real-time constraints will be evaluated based on whether or not they are serviced
by their deadlines while jobs with flow time constraints will be evaluated using
total flow time. By directly measuring the appropriate criteria for each job type,
the mixed criteria model will hopefully lead to more effective packet scheduling
algorithms.

If we restrict all jobs to be unit-sized, there is a polynomial-time optimal
algorithm that we call Slacker, which minimizes total flow time after maximiz-
ing the total value of the deadline jobs, and we show that an online variant of
Slacker produces an optimal (or better) schedule for the flow jobs while being
2-competitive for maximizing the value of deadline jobs that complete by their
deadlines. Furthermore, we show the perhaps surprising result that the intro-
duction of a single deadline job makes this problem NP-complete. Finally, we
provide additional results that further delineate the P-NP boundary for this
problem.

2 Problem Definition and Variants

An input instance for a scheduling problem is a set of jobs I. For any scheduling
algorithm A and any input instance I, A(I) is the schedule produced by A when
given I.

The DeadFlow problem is a mixed criteria problem for an input instance
I = If∪Id where If (the flow jobs) and Id (the deadline jobs) are non-intersecting
sets of jobs. For the flow jobs If , each job has a processing time pj and a release
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time rj. The deadline jobs also have deadlines dj and weights or values wj.
Given a single processor, the algorithm must schedule both sets of jobs where
each job set has its own criterion for optimality. For the flow jobs If , the goal is to
minimize their total flow time. For the deadline jobs Id, the goal is to maximize
the value of jobs completed by their deadlines. We assume that preemption is
allowed. Generalizing standard scheduling notation we represent DeadFlow as

1|(rj , pj , pmpt|
∑

Fj), (rk, pk, dk, wk, pmpt|
∑

wkUk)

Given an algorithm A for DeadFlow and any input instance I = If ∪ Id, we use
FA(I) to denote the total flow time of the flow jobs If in schedule A(I), VA(I)
to denote the total weight of jobs in Id completed by their deadlines in schedule
A(I), and we use MA(I) to denote the makespan or maximum completion time
of schedule A(I).

We say that a schedule is value-optimal if it maximizes VA(I). We define
an optimal schedule O(I) as a value-optimal schedule for input instance I that
minimizes the total flow time of the flow jobs. It is true that for many input in-
stances I, there are non-value-optimal schedules A(I) such that FA(I) < FO(I).
We use O(I) to denote an optimal schedule in order to reflect the typical assump-
tion that flow jobs have a lower priority than deadline jobs. This assumption is
commonly used because failing to complete a deadline job has more permanent
consequences than delaying a flow job. What is different about our approach is
that we prioritize deadline jobs at the criteria level rather than the individual
job level. This allows our algorithm to schedule flow jobs ahead of deadline jobs
when the jobs are not truly in conflict as is the case in Scenario 1 in the intro-
duction. We say that an algorithm A for the DeadFlow problem is a c1-value
c2-flow approximation algorithm if VA(I) ≥ 1/c1VO(I) and FA(I) ≤ c2FO(I) for
all input instances I.

We consider two special cases of the DeadFlow problem. The Single DeadFlow
scheduling problem (SDF) is the special case of the DeadFlow problem where the
number of the deadline jobs is exactly one. In this case, the single deadline job
must be completed by its deadline, so its weight is unimportant. We use this
variant to prove hardness results by reducing knapsack variants to SDF.

The Unit DeadFlow scheduling problem (UDF) is the special case of the Dead-
Flow problem when every job is of unit size. With generalized scheduling nota-
tion, we represent UDF as

1|(rj , pj = 1, pmpt|
∑

Fj), (rk, pk = 1, dk, wk, pmpt|
∑

wkUk)

We give an optimal polynomial-time algorithm Slacker for UDF in Section 4.
We also show that an online variant of Slacker is a 2-value 1-flow approximation
algorithm for UDF.

3 Background and Related Work

Scheduling only flow jobs and only deadline jobs have both been studied ex-
tensively. Preemptive flow job scheduling is solvable via the shortest remaining
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processing time algorithm (SRPT). Scheduling to maximize the throughput or
value of jobs completed by their deadlines on a single machine is NP-hard [12].
If all jobs have the same size, there is a polynomial time algorithm [7].

However, if there exists a feasible schedule that satisfies every deadline jobs’s
deadline, several algorithms including Earliest Deadline First (EDF) find a fea-
sible schedule in polynomial time. If all the deadline jobs have unit size, this
corresponds to one variant of the single criterion packet scheduling problem
[6,8,10,13,17,19] called buffer management with bounded delay. The greedy strat-
egy of always scheduling an job with highest weight without consideration of the
job’s deadline has been shown to be 2-competitive [13]; the best known algorithm
is 1.939-competitive [10].

Single criterion packet scheduling has also been studied where jobs do not have
deadlines but must be delivered in First In First Out (FIFO) order [2,3,16,17].
The greedy strategy is also 2-competitive for this problem [16]. The best known
algorithm is 1.983-competitive [17].

A problem similar to the DeadFlow problem has been studied in the real-
time systems community where they must schedule a mixture of hard periodic
tasks and soft aperiodic tasks [9,18,23]. In this work, the goal is to minimize
the flow time of the aperiodic tasks given that the periodic tasks must com-
plete by their deadlines. Most work makes the simplifying assumption that the
aperiodic tasks will be served in FCFS order. Under this assumption, there
are simple policies that can optimally schedule each aperiodic job as it arrives.
The philosophy here is the same as our Slacker algorithm where the aperiodic
tasks are prioritized except that no periodic deadline task is allowed to miss its
deadline.

DeadFlow is distinct from traditional multiple criteria scheduling problems
which have one set of jobs that must satisfy every criteria. Most research on
such problems focuses on designing algorithms that optimize for a particular
problem [4,21,22,24] or on proving the existence of good schedules for a variety
of environments [14,15,20,25].

We are aware of two previous papers that study mixed criteria scheduling
problems [1,5]. This work is similar to ours in that they deal with mixed crite-
rion scheduling problems; however, this work differs from ours by not allowing
job preemptions. Agnetis, Mirchandani, and Pacciarelli [1] consider a selection
of mixed criteria problems in which each set of jobs has its own representa-
tive agent that specifies the set’s criterion. Their paper analyzes two compet-
ing agents where each agent utilizes one of the following criteria: maximum
of regular functions over job completion time, number of late jobs, and total
weighted completion time. Baker and Smith [5] examine the group of mixed
criteria scheduling problems that result from the combination of the follow-
ing three criteria: minimizing makespan, minimizing maximum lateness, and
minimizing total weighted completion time. They demonstrate that combining
weighted completion time with either of the other two criteria results in an
NP-Complete problem.
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4 Unit DeadFlow Problem

The Unit DeadFlow problem, where all jobs are of unit size, is solvable in poly-
nomial time. Furthermore, we give an online algorithm that is a 2-value 1-flow
approximation algorithm for UDF.

4.1 Offline Unit DeadFlow

Slacker is our name for the offline algorithm. Below is a detailed description
of the Slacker algorithm and a proof of its optimality for UDF. First deadline
jobs Id must be processed to find the maximum weight feasible set of deadline
jobs. Initially, our set of jobs M is empty. We consider deadline jobs one by one
starting with the heaviest jobs first. A job j is added to M if M ∪{j} is feasible.
The resulting M has maximum possible weight of all feasible sets of deadline
jobs because jobs have unit size so it is impossible that accepting one heavy job
will prevent two slightly less heavy jobs from being scheduled. Therefore, we can
assume that Id is feasible and that the goal is to determine when to schedule the
deadline jobs. The flow jobs will be scheduled in FIFO order.

This portion of Slacker is composed of two major subroutines. The first, which
we name Inverted EDF or EDF−1, takes as input a collection of deadline jobs
Id and produces a schedule EDF−1(Id) that schedules the deadline jobs as late
as possible. The second, FirstIdle, takes a given schedule S(I) and finds the first
idle interval [t, t + 1) that can be filled by a later executed deadline job.

Inverted EDF schedules deadline jobs as late as possible by viewing time in
reverse with time 0 as time E, the maximum deadline of all jobs in the instance,
and time E as time 0. For each deadline job j, EDF−1 views its release time
as E − dj and its deadline as E − rj . Inverted EDF then schedules the modified
jobs using the earliest deadline first (EDF) algorithm. This guarantees that all
feasible deadline jobs will meet their deadlines and will be scheduled as late as
possible.

Algorithm 1 (Inverted EDF or EDF−1). Given a set of deadline jobs Id,let
E denote the largest deadline in Id, and create Īd such that for every jk =
(rk, pk, dk, wk) ∈ Id there exists a j̄k = (r̄k, pk, d̄k, wk) ∈ Īd such that r̄k = E−rk,
p̄k = pk, and d̄k = E − dk. Let EDF (Īd) order jobs by increasing job weight.
Construct EDF−1(I) by converting each job interval (j̄x, sx, ex) in EDF (Īd)
into the job interval (jx, E − sx, E − ex).

Observation 1. For any set of deadline jobs Id and any time t where EDF−1(Id)
is not idle, the deadline job scheduled is an available job with the earliest deadline
with ties broken by the FIFO policy.

Lemma 1. Let Id be any set of deadline jobs and let j = (rj , 1, dj) be any
deadline job in Id. If j is scheduled in interval [i, i + 1) in EDF−1(Id), then
EDF−1(Id) is busy in the interval [i + 1, dj).

Proof. This follows given that EDF is a non-idling algorithm; therefore, the only
reason that job j is not scheduled after time i + 1 is that [i + 1, dj) is filled with
jobs (or i + 1 = dj).
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Corollary 1. For any set of deadline jobs Id and for any time t, EDF−1(Id)
minimizes the number of deadline jobs scheduled in the interval [0, t).

Algorithm 2 (FirstIdle). Given an input I = If ∪Id and a schedule S(I),find
the first idle interval [t, t + 1) in S(I) such that there exists a deadline job
(rk, 1, dk) in Id such that rk ≤ t and t + 1 ≤ dk. If no such idle interval ex-
ists, return “null”. Otherwise, return (t, j) where j = (r, 1, d) when j is the
deadline job that is scheduled the earliest after time t + 1 in S(I).

Given these two pieces, we define Slacker as follows. Note that we define
Slacker to take 2 inputs, a set of jobs I and a start time s. We use Slacker(I)
to stand for Slacker(I, 0).

Algorithm 3 (Slacker). Given an input I = If ∪ Id and a start time s Modify
all jobs in I so that their release time is at least s. Let S(I) be the schedule
resulting from using FCFS to fill EDF−1(Id) with the jobs If . Apply FirstIdle
to S(I). If FirstIdle returns “null”, return S(I). Otherwise, FirstIdle returns
time t and deadline job j. Let S′(I) be the interval [s, t) on S(I) with j in
[t, t + 1), and let I ′ be the set of all jobs in S′(I) and return S′(I) concatenated
with Slacker(I \ I ′, t + 1).

We next define the concepts of free jobs and delaying jobs. Intuitively, free jobs
are deadline jobs that do not delay flow jobs while delaying jobs are deadline
jobs that do delay flow jobs. To formally define these two terms, we use the
notation S(Id \ {j}) to represent the schedule S(Id) without the job j, and we
use the notation If (S(Id)) to represent the schedule produced by using FIFO
given the schedule of deadline jobs, S(Id).

Definition 1. For any input instance I and any schedule S(I), deadline job j is
a free job if and only if If (S(Id\{j})) has the same flow time cost as If (S(Id)).
Any deadline job that is not a free job is a delaying job.

Definition 2. For any input instance I, any schedule S(I), and any time t, let
D(S(I), t) be the number of delaying jobs in the interval [0, t].

Slacker is optimal because it satisfies the following property with respect to
D(S(I), t).

Lemma 2. For any problem instance I, any schedule S(I), and any time t,
D(Slacker(I), t) ≤ D(S(I), t).

Proof (Proof Sketch). For the sake of contradiction, let S(I) be a better schedule
that agrees with Slacker as much as possible; i.e. there is a time x such that
D(S(I), x) < D(Slacker(I), x). Without loss of generality, we assume that S(I)
uses FIFO ordered flow jobs and EDF ordered deadline jobs (breaking ties using
FIFO). Furthermore, we assume that S(I) does not idle when jobs are available.
Let t be the largest integer such that S(I) and Slacker(I) are identical on the
interval [0, t); that is, S(I) and Slacker(I) first differ in interval [t, t + 1). We
have four cases to consider.
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The first case is when S(I) has a free deadline job scheduled in [t, t + 1).
By definition of a free job and the assumption that S(I) and Slacker(I) are
identical up to time t, Slacker(I) cannot schedule a flow job in [t, t+1). Thus it
must either idle or schedule a deadline job. If we assume that Slacker(I) idles,
we come to a contradiction. That is, if Slacker(I) idles on [t, t + 1), Slacker
did not find a deadline job in Id that has not been scheduled before t but can
be schedule in [t, t + 1); therefore there does not exists such a job. However,
S(I) demonstrates that such a job exists. Ergo, we know that when S(I) has a
free deadline job scheduled in [t, t + 1), Slacker(I) has the same deadline job
scheduled in [t, t + 1), and thus this case is impossible.

In the second case, Slacker(I) has scheduled a delaying deadline job j in
[t, t + 1) and S(I) has scheduled a flow job in [t, t + 1). Let [h, h + 1) denote
the last interval before time t such that a free deadline job was scheduled in
both S(I) and Slacker(I). If no such time exists, let h + 1 = 0. Slacker(I)
scheduled all the deadline jobs executed after time h + 1 using Inverted EDF.
Given Corollary 1, Slacker minimizes the number of deadline jobs scheduled in
the interval [h + 1, t + 1). Thus, this case is impossible.

The third case is when Slacker(I) has scheduled a free job in [t, t + 1). This
case is impossible because we assume S(I) is non-idling.

The fourth and final case is when S(I) has scheduled a delaying deadline job
j in [t, t + 1) and Slacker(I) has scheduled a flow job j′ in [t, t + 1). It can be
shown that S(I) can be improved making this case impossible as well.

Since Slacker(I) and S(I) cannot differ, S(I) does not exist, and the result
follows.

Lemma 3. Given a problem instance I = If ∪ Id, any S(I) that minimizes
D(S(I), t) for all times t is optimal.

Proof. For the sake of contradiction assume that S(I) is not optimal. Let O(I)
be an optimal schedule. Without loss of generality, we assume that both S(I)
and O(I) use FIFO to order the flow jobs and EDF to order the deadlines
jobs (breaking ties using FIFO), and that neither schedule idles when jobs are
available.

Let t be the largest integer such that S(I) and O(I) are identical on the
interval [0, t); that is, S(I) and O(I) first differ in interval [t, t + 1]. It cannot
be the case that one schedule processes a job in this interval and the other does
not given our assumption that neither schedule idles the machine unnecessarily.
Thus, one schedule executes a delaying deadline job j in the interval [t, t + 1]
while the other executes a flow job j′ in the interval. Given the assumption that
S(I) minimizes D(S(I), q) for all times q, it must be the case that O(I) has a
delaying deadline job scheduled in the interval [t, t+1) while S(I) has a flow job
j′ scheduled in the interval [t, t + 1).

Since both schedules order flow jobs with FIFO, we know that j′ is the first
flow job scheduled after time t in O(I). Let [t′, t′ + 1) be the point in time that
j′ is scheduled in O(I). We know that t′ − t deadline jobs are scheduled in the
interval [t, t′) in O(I). Since S(I) executes job j′ in the interval [t, t′), there must
be a legal way to schedule these t′ − t deadline jobs in the interval [t + 1, t′ + 1).
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Thus, we can modify O(I) by scheduling job j′ in the interval [t, t+1) and these
t′ − t deadline jobs in the interval [t + 1, t′ + 1]. This modification produces a
new schedule with a better flow time than that of O(I) which is a contradiction.
Ergo, S(I) is optimal.

Corollary 2. Slacker is an optimal algorithm for the Unit DeadFlow problem

The following observation will be useful for analyzing the online variant of
Slacker.

Observation 2. Given an input I = If ∪ Id and any deadline job j, let I ′ =
I ∪ {j}. FSlacker(I) ≤ FSlacker(I ′), and VSlacker(I) ≤ VSlacker(I ′).

Alternatives and Extensions to Slacker. Slacker is not the only way to
solve the offline Unit DeadFlow problem. An alternative approach is to use min-
cost flow and min-cost matching techniques. That is, we can view each problem
instance as an instance of a transshipment problem or as an instance of an
assignment program, both of which are solvable in polynomial time[11].

However, Slacker has two advantages. First, Slacker is more efficient. Second,
Slacker remains polynomial when extended to the case where deadline jobs have
arbitrary length, something not true of the linear programming approaches of
solving this problem.

4.2 Online Unit DeadFlow

We present a 2-value 1-flow algorithm for online UDF, which we call Online
Slacker.

Definition 3. For any input instance I and any t ≥ 0, t is a release time if
some job in I has rj = t. Let J(I, t) be the set of jobs with release time exactly
t, and let It denote the set of jobs with release time of at most t.

Algorithm 4 (Online Slacker). Given an input instance I = If ∪ Id, at each
release time t, Online Slacker applies Slacker to the jobs in It that have not yet
been scheduled to create a new schedule we denote as OnlineSlacker(It). Let
s and t be two consecutive release times in I. Then Online Slacker schedules
jobs in interval [s, t) according to Slacker(Is). For the maximum release time t,
Online Slacker schedules jobs in interval [t, ∞) according to OnlineSlacker(It).

Definition 4. For any input instance I and any release time t, let A(It) denote
the deadline jobs that are scheduled at some time t′ ≥ t in OnlineSlacker(It).
We say that A(It) are the jobs accepted by Online Slacker at time t. Let
A(I) denote the set of deadline jobs that are in A(It) for some time t ≥ 0. We
say that A(I) are the set of deadline jobs accepted by Online Slacker.

Definition 5. For any input instance I, let R(I) denote the set of deadline jobs
that are not scheduled by Online Slacker. We say that R(I) is the set of jobs
rejected by Online Slacker. We say that a job j is rejected at release time t if
time t is the first release time after rj where job j is not in A(It). We use R(It)
to denote the set of jobs rejected at release time t.
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Once a job is rejected, it is never accepted.

Definition 6. For any input instance I, let S(I) denote the set of deadline jobs
that are scheduled by Online Slacker.

Every job scheduled by Online Slacker must be accepted by Online Slacker.
However, a job may be accepted by Online Slacker but still get rejected at a
later time.

Observation 3. For any input instance I, any times t2 > t1 ≥ 0 where It1 and
It2 are both not empty, and any time z such that some delaying deadline job is
executed in [z, z + 1) in OnlineSlacker(It1), a delaying deadline job is executed
in [z, z + 1) in OnlineSlacker(It2).

Lemma 4. For any two input instances I and I ′ that differ only in the weights
of the deadline jobs, the set of times that deadline jobs are scheduled by Online
Slacker for I is identical to the set of times that deadline jobs are scheduled by
Online Slacker for I ′.

In the uniform weight case, we may assume without loss of generality that once
Online Slacker accepts a job, it will eventually schedule the job. The only reason
to reject the job would be to schedule some other deadline job, but since all jobs
have uniform weight, we may simply reject the other deadline job instead.

The first step is to demonstrate that given a feasible set of deadline jobs,
Online Slacker completes at least half of them.

Lemma 5. Given a feasible input I = If ∪ Id, Online Slacker legally schedules

at least
⌈
|Id|
2

⌉
of the deadline jobs.

Proof. Given Lemma 4, we assume that all jobs in Id have uniform weight. This
allows us to assume that once a job is accepted, it will be scheduled. We call
any time t where OnlineSlacker(I) schedules a deadline job on [t, t + 1) a hit.
We call any time t where Slacker(I) schedules a deadline job j1 on [t, t + 1)
while OnlineSlacker(I) does not schedules a deadline job on [t, t + 1) a miss.
The number of deadline jobs that Online Slacker fails to schedule is at most the
number of misses. We will show that the number of misses is at most the number
of hits and the result follows.

Consider any miss at time t where Slacker(I) schedules deadline job j1. We
now argue that job j1 must either have been already scheduled by Online Slacker
or is part of A(I). Job j1 must have been released by time t or else Slacker could
not schedule it at time t. It must have a deadline of at least t + 1 or else Slacker
could not have scheduled it at time t. It must have been feasible when it arrived
because it could have been scheduled at time t as Online Slacker’s set of times
devoted to deadline jobs is monotonically increasing over time by Observation 3.
Thus, job j1 is part of Online Slacker’s currently accepted job set and will be
scheduled at some later time or it was scheduled in some hole earlier in the
schedule. Thus, we can associate each miss with a unique hit, and it follows that
the number of misses is at most the number hits.
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Lemma 6. Given any input instance I and any release time t, if j ∈ R(It),
then in the interval [t, dj) in OnlineSlacker(It), only deadline jobs with weight
at least wj are scheduled.

This follows from the optimality of Slacker for the offline version of this problem.
We now show that the sum of weighted deadline jobs scheduled by Online Slacker
is at least half of the offline optimal.

Lemma 7. Given a feasible input I = If ∪ Id, VOnlineSlacker(I) ≥ VSlacker(I)
2 .

Proof (proof sketch). Given Lemma 4, we know that Online Slacker schedules
at least half the deadline jobs in a feasible input instance I. We now show that
the weights of those jobs scheduled by Online Slacker must be at least half the
weight of all jobs.

To do this, we define a mapping f between rejected jobs and scheduled jobs.
We consider rejected jobs in order of rejection time. For jobs with the same
rejection time, we consider them in order of deadline breaking ties arbitrarily.
For a job j rejected at time t, we define f(t) to be the first unmapped job
scheduled at or after time t.

It can be shown that the job f(j) must be scheduled in time [t, dj). By
Lemma 6, the jobs scheduled in [t, dj) in OnlineSlacker(It) must have weight
at least wj . If any of these are later rejected, they must be replaced by jobs of
at least the same weight. Thus, the weight of job f(j) must be at least wj . The
lemma then follows.

Finally, we observe that adding a deadline job to any input I cannot decrease
the resulting value of the Online Slacker’s schedule.

Lemma 8. Given an input I = If ∪ Id and any deadline job j, let I ′ = I ∪ {j}.
FOnlineSlacker(I)≤FOnlineSlacker(I ′), and VOnlineSlacker(I)≤VOnlineSlacker(I ′).

Lemma 9. Given an input I = If ∪ Id, VOnlineSlacker(I) ≥ 1
2VSlacker(I).

Proof. First let I ′d denote the subset of deadline jobs scheduled by Slacker and
I ′ = If ∪I ′d. From Lemma 7, we see that VOnlineSlacker(I ′) ≥ 1

2VSlacker(I ′). From
Lemma 8, it follows that VOnlineSlacker(I) ≥ VOnlineSlacker(I ′) ≥ 1

2VSlacker(I ′)=
1
2VSlacker(I).

Lastly, we show that the flow time of Online Slacker is at most that of Slacker.

Lemma 10. Given an input I = If ∪ Id, FOnlineSlacker(I) ≤ FSlacker(I).

Proof. Given Lemma 4, we can assume that all deadline jobs have the same
weight. We can then assume that once a job is accepted, it will eventually
be scheduled. FOnlineSlacker(I) = FSlacker(A(I)), and since the set of dead-
line jobs that are in A(I) is a subset of Id, it follows from Observation 2 that
FSlacker(A(It)) ≤ FSlacker(I). Ergo, FOnlineSlacker(I) ≤ FSlacker(I).

Corollary 3. Online Slacker is a 2-value 1-flow algorithm for the Unit Dead-
Flow problem.
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5 NP-Hardness Result

The previous section demonstrates that Slacker produces optimal schedules when
jobs are of unit size. However, when flow jobs sizes are unbounded, Slacker does
not always minimize total flow time.In fact, the DeadFlow problem with flow
jobs of unbounded size is NP-Complete, even if there is a single deadline job.
To prove this observation, we present a summary of the reduction process from
Partition to SDF.

SDF becomes a knapsack problem for a very restricted class of SDF instances
that we call selection instances.

Definition 7. An instance I = If ∪ Id is a selection instance if Id and If

satisfy the following properties: Id = {(r′ = 0, p′, d′ = MSRPT (If )}, and all the
jobs in If have unique release times ri. If we order the jobs in increasing order
of release time, ri + pi ≤ ri+1.

In a selection instance, if we ignore the deadline job, the flow jobs can be sched-
uled trivially since each job completes by the next job’s release time. The main
issue for selection instances is determining which flow jobs should be moved to
the deadline d′ to create space for the deadline job. The cost of moving a flow job
j can be broken into two components: the fixed cost of moving a job beyond the
deadline d′ and the variable cost of rescheduling j after d′. The benefit gained
by moving flow job j is that we can schedule up to pj units of the deadline job
in the interval [rj , rj + pj). In knapsack terms, our goal is to move p′ units of
flow jobs while minimizing the cost incurred in doing so. There are some special
properties in these knapsack instances that we must account for in our reduc-
tions as is illustrated in Figure 1. These include the observation that no two jobs
will have the same fixed cost and the fixed cost for a job j is at least the sum of
the sizes of all flow jobs that arrive after job j.

To show that SDF is NP-hard, we will start our reduction from the Partition
problem. Note that this problem reduces to standard knapsack in one step. We
reduce Partition to Unique Number Partition or UNP, the variant of Partition
such that every integer in the input is unique. This ensures that each item in
the partition input is unique, and we use this property in the next reduction
to guarantee a unique fixed cost for each item in the knapsack problem. We
then reduce UNP to a constrained variant of the minimization 0-1 Knapsack
problem where we ensure that the cost of each flow job is at least the sum of
all later arriving flow jobs. This second reduction is very similar to the standard
Partition to Knapsack reduction, but it demonstrates that simply choosing which
flow jobs must be displaced by the single deadline job, while ignoring the cost of
rescheduling them, is NP-hard. The third intermediate problem is a variant of
the second problem where we account for the cost of rescheduling the displaced
jobs by scaling the fixed costs so that the cost of rescheduling them is sufficiently
small. The third problem reduces to SDF by transforming the Knapsack instance
into a selection instance.
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Selection instance:
I = If ∪ Id where If = {j1 =
(0, 3), j2 = (3, 3), j3 = (6, 2), j4 =
(8, 1)} and Id = {j5 = (0, p′, 9)}

SRPT (If)

j1 j2 j3 j4
0 3 6 8 9

Corresponding knapsack instance:
Find the minimum cost set
of items whose sizes sum up
to at least p′ from the set
{(6, 3), (3, 3), (1, 2), (0, 1)}.

i = 1 2 3 4

ci 6 3 1 0

si 3 3 2 1

Fig. 1. Illustration of how an SDF selection instance can be modeled as a knapsack
instance if we only consider the fixed cost of displacing a job

Delineating the P-NP Boundary. We identify three factors that contribute
to the complexity of any DeadFlow problem: flow job size, deadline job size,
and deadline job weight. Of these factors, flow job size is the most significant.
When flow jobs have unrestricted size, most natural DeadFlow variants are NP-
Complete. When flow jobs size are of unit length, the DeadFlow problem is in
P if one of the following two conditions holds: the deadline jobs do not have
weights or the deadline jobs have unit length. If the deadline jobs have both
weights and arbitrary length, the problem is NP-Complete. Furthermore, our
current reduction from Partition to SDF only demonstrates that the problem
is weakly NP-hard. It is an open problem whether or not DeadFlow is strongly
NP-hard.

6 Conclusions

In this paper, we introduced the mixed criterion DeadFlow scheduling problem
that models providing quality of service in networks. Unfortunately, even the
simple variant SDF is NP-Complete, which is interesting since both total flow
time scheduling and finding a legal schedule for a feasible set of deadline jobs
can both be solved in polynomial time using simple online algorithms. We give
a polynomial time algorithm Slacker that solves the special case where all jobs
have unit size as well as some simple extensions of this problem. Furthermore,
we show that an online version of Slacker is a 2-value 1-flow approximation
algorithm for the online Unit DeadFlow problem. This result is interesting as our
algorithm achieves an almost optimal competitive ratio for the single criterion
packet scheduling problem while it maximizes the amount of time devoted to
flow jobs. This highlights the value of the mixed criteria approach to the packet
scheduling problem.

There are many open questions. For instance, can we find an online algorithm
for the Unit DeadFlow problem that is better than 2-competitive for value while
being constant competitive for flow time? Furthermore, are there good offline
and online algorithms for the DeadFlow problem?
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Abstract. Given an acyclic directed graph and two distinct nodes s
and t, we consider the problem of finding k disjoint paths from s to
t satisfying some objective. We consider four objectives, MinMax,
Balanced, MinSum-MinMin, and MinSum-MinMax. We use the algorithm by
Perl-Shiloach and labelling and scaling techniques to devise an FPTAS
for the first three objectives. For the forth one, we propose a general and
efficient polynomial-time algorithm.

1 Introduction

In communication networks, one way of providing reliable communication is to
find several disjoint paths, either node disjoint or edge disjoint. The advantage
is that, if some links are broken, there are still other routing paths.

Different objectives may be used to measure the quality (or usefulness) of the
disjoint paths. For example, we may require that the total weight of the disjoint
paths to be minimized, the so-called MinSum objective. This problem can be
solved in polynomial time by standard network flow methods [1,9]. However, for
many other objectives, the problems are hard to solve. Li et al. [7] proposed the
MinMax objective and showed that the problem is strong NP-complete. Yang
et al. [11] proposed the MinMin objective and proved that the problem is also
strong NP-complete.

For acyclic directed graphs (DAGs), the problem seems to be easier. In this
paper, we focus on finding disjoint paths on DAGs. We propose efficient algo-
rithms for four different objectives that are practically motivated, MinMax k-DP,
Balanced k-DP, MinSum-MinMax k-DP, and MinSum-MinMin k-DP.

Let G = (V, E) be a directed graph, s and t two distinct nodes in V , and
F : E �→ N a positive integral weight function on the edges. Li et al. [7] had
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proposed the MinMax k-DP problem, where we want to find k disjoint paths
P1, . . . , Pk from s to t such that the cost of the most expensive path is minimized,
i.e., max1≤i≤k F(Pi) is minimized, where F(Pi) =

∑
e∈Pi

F(e) is the weight
of Pi. They proved that the problem is strong NP-complete, for directed and
undirected graphs, and for edge-disjoint and node-disjoint paths. On DAGs, the
problem is NP-complete but has a pseudo-polynomial-time algorithm. We will
give an FPTAS for this problem on DAGs.

A variant of this problem is the Balanced k-DP problem where we want to
find k disjoint paths P1, . . . , Pk from s to t such that the costs of the cheapest and
most expensive path are close together, i.e., max1≤i≤k F(Pi)/ min1≤i≤k F(Pi) is
minimized. We can show by reduction from the Hamiltonian Path problem that
this problem is strong NP-complete for directed and undirected graphs, and for
edge-disjoint and node-disjoint paths. For DAGs, the problem is NP-complete by
reduction from the Partition problem. We will give an FPTAS for this problem
on DAGs.

In the MinSum-MinMax k-DP problem we want to find k disjoint s − t paths
P1, . . . , Pk such that

∑
1≤i≤k F(Pi) is minimized. Among all such paths, we

want to find those minimizing max1≤i≤k F(Pi). Note that we can show by re-
duction from the Disjoint Paths problem (see [3]) that this problem is strong
NP-complete for directed graphs, and for edge-disjoint and node-disjoint paths.
For undirected graphs and DAGs, the problem is NP-complete by reduction from
the Partition problem. We will give an FPTAS for this problem on DAGs.

Similarly, in the MinSum-MinMin k-DP problem we want to minimize min1≤i≤k

F(Pi) among all k disjoint paths of minimum total length. This problem was
proposed by Yang et al. [12]. They showed that, for k = 2, the problem is
strong NP-complete for directed graphs and has a polynomial-time algorithm
for DAGs. The latter algorithm reduces the MinSum-MinMin 2DP problem to the
Normalized α+-MinSum 2DP problem [13] which can be solved in polynomial
time. However, the algorithm uses many expensive arithmetic operations like
multiplications and divisions, and it is not very intuitive. Moreover, it cannot be
generalized to arbitrary constant k. We will propose a more efficient algorithm
for arbitrary constant k.

Due to space constraints we state all algorithms for k = 2. We shortly sketch
how to generalize them to arbitrary constant k ≥ 2.

2 Preliminaries

2.1 The Perl-Shiloach Algorithm

In this subsection, we introduce the algorithm PSA to find k node-disjoint paths
on a DAG by Perl-Shiloach [8], which is a key subroutine in our algorithms.

In the Disjoint Paths Problem (DPP) we are given a directed graph G = (V, E)
and k pairs of distinct nodes (s1, t1), . . . , (sk, tk). We want to find k node- or
edge-disjoint paths P1, . . . , Pk, where Pi is a path from si to ti, for 1 ≤ i ≤ k.
The decision version of this problem, for node-disjoint and edge-disjoint paths,
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was shown to be NP-complete by Fortune et al. [3], even if k = 2. For DAGs,
Perl and Shiloach gave a polynomial time algorithm, PSA [8].

PSA is actually a reduction from DPP to the Connectivity problem. Given a
DAG G = (V, E) and k pairs of distinct nodes (s1, t1), . . . , (sk, tk), let v1, . . . , vn

be a topological order of V , i.e., there are only edges from nodes with lower
indices to nodes with higher indices. We construct a graph Gk = (Vk, Ek) as
follows:

Vk = {〈j1, . . . , jk〉 | 1 ≤ ji ≤ n for 1 ≤ i ≤ k, ji �= jl for 1 ≤ i �= l ≤ k}, (1)

Ek =
k⋃

d=1

{(〈j1, . . . , jd−1, jd, jd+1, . . . , jk〉, 〈j1, . . . , jd−1, j
′
d, jd+1, . . . , jk〉)

| (vjd
, vj′

d
) ∈ E and jd = min

1≤l≤k
jl}. (2)

For simplicity, we will only describe the algorithms for the case of k = 2. For
k ≥ 2, see [2]. To find two disjoint paths from s = v1 to t = vn, we add two
nodes 〈s, s〉 = 〈1, 1〉 and 〈t, t〉 = 〈n, n〉 to V2 to obtain graph G′

2:

V ′
2 = {〈i, j〉 | 1 ≤ i, j ≤ n and i �= j} ∪ {〈s, s〉, 〈t, t〉}, (3)

E′
2 = {(〈i, j〉, 〈i, k〉) | (vj , vk) ∈ E, j < i}

∪ {(〈i, j〉, 〈k, j〉) | (vi, vk) ∈ E, i < j}. (4)

We call the edges in the first set of Eq. (4) horizontal edges and the edges in
the second set vertical edges.

Lemma 1 [8]. There are two node disjoint paths P1, P2 from s to t in G if and
only if there is a directed path P from 〈s, s〉 to 〈t, t〉 in G′

2, and P1 (P2) consists
of the horizontal (vertical) edges of P . ��

2.2 Edge Disjoint Versus Node Disjoint Paths

We can transform the acyclic edge disjoint case to the acyclic node disjoint
case using the method by Li et al. [7]. Given a DAG G and two distinct nodes
s, t, add new nodes u, v and edges (u, s), (t, v). Form the directed line graph
(see [4]), and let s′, t′ denote the nodes corresponding to (u, s), (t, v) respectively.
Replace each node w (except s′, t′) in the line graph with two nodes w1, w2 and
an edge (w1, w2) such that all edges into (out of) w are now into w1 (out of
w2). The weight of (w1, w2) is the weight of the edge in G corresponding to
w. Other edges have weight 0. This weight-preserving transformation gives a
one-to-one correspondence between edge disjoint paths in the original graph and
node disjoint paths in the new graph. Thus, for all the problems investigated in
this paper, we only give algorithms for the node disjoint case.
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3 The MinMax 2DP Problem

Our FPTAS for MinMax 2DP on DAGs is based on the pseudo-polynomial-time
algorithm by Li et al. [7] and the weight scaling technique (cf. [5,6,10]).

First, we use PSA to construct the graph G′
2 as in Eqs. (3) and (4). Then

MinMax 2DP is equivalent to finding a directed path P from 〈s, s〉 to 〈t, t〉 in G′
2

minimizing max{F(PH), F(PV )}, where PH (PV ) denotes the horizontal (verti-
cal) edges of P .

The pseudo-polynomial-time algorithm uses a standard labeling method. If
there is a directed path P from 〈s, s〉 to a node 〈i, j〉 ∈ V ′

2 , we label it by
(X, Y, Pred), where X (Y ) is a positive integer denoting the total weight of all
horizontal (vertical) edges in P and Pred is the index of the predecessor of 〈i, j〉
in P . We compute for each node in topological order a set of labels for all the
paths from 〈s, s〉 to that node. When the algorithm terminates, the label in the
label set of 〈t, t〉 minimizing max{X, Y } is the solution.

Unfortunately, the number of labels lab2 for one node may be exponentially
large, where lab = (n − 1) · maxe∈E F(e). In order to obtain a polynomial-time
algorithm, we must somehow compress the label set. We use the scaling technique
known from the Subset Sum FPTAS.

We store the labels of each node 〈i, j〉 in a 2-dimensional array Li,j [1 . . . �,
1 . . . �], where � = log1+δ lab� + 1. Label (X, Y, Pred) will be stored in
L[log1+δ X� + 1, log1+δ Y � + 1]. Each cell of Li,j will store at most one la-
bel. We use a set Ii,j to keep track of all the entries of Li,j that actually store a
label. Then, for each node in the topological order, we compute the label set of
the node. If a new label should be stored in an array cell which already contains
another label, then we discard the new label. We let Fi,j denote the cost of edge
(vi, vj) in E. The third component Pred of the label (X, Y, Pred) is now of the
form (〈i′, j′〉, (a, b)) and is used to reconstruct the path P corresponding to the
label, where 〈i′, j′〉 is the index of the predecessor of 〈i, j〉 in P and (a, b) is the
index of the cell of Li′,j′ from which (X, Y, Pred) is computed.

The subroutine LABELSCALING computes for each node a scaled set of labels,
while the main algorithm FPTAS-DAG-MinMax-2DP returns the approximate
solution.

LABELSCALING(G = (V, E), s, t, F , δ)

1 Construct G′
2 = (V ′

2 , E′
2) as in Eqs. (3) and (4);

2 Initialize matrices Li,j [k, l] = NULL, for 1 ≤ i, j ≤ n and
1 ≤ k, l ≤ �log1+δ lab� + 1;

3 Ii,j = ∅, for 1 ≤ i, j ≤ n;
4 Is,s = {(1, 1)};
5 Ls,s[1, 1] = (0, 0, NULL);
6 for i ← 1 to n do
7 for j ← 1 to n do
8 for each (〈i, k〉, 〈i, j〉) ∈ E′

9 for each (a, b) ∈ Ii,k

10 let (X, Y, Pred) be the label in Li,k[a, b];
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11 let c = �log1+δ(X + Fk,j)� + 1;
12 if Li,j [c, b] == NULL
13 then Li,j [c, b] = (X + Fk,j , Y, (〈i, k〉, (a, b)));
14 Ii,j = Ii,j ∪ {(c, b)};
15 for each (〈k, j〉, 〈i, j〉) ∈ E′

2

16 for each (a, b) ∈ Ik,j

17 let (X, Y, Pred) be the label in Lk,j [a, b];
18 let d = �log1+δ(Y + Fk,i)� + 1;
19 if Li,j [a, d] == NULL
20 then Li,j [a, d] = (X, Y + Fk,i, (〈k, j〉, (a, b)));
21 Ii,j = Ii,j ∪ {(a, d)};

FPTAS-DAG-MinMax-2DP(G = (V, E), s, t, F , ε)

1 δ = (1 + ε)
1

2n−2 − 1;
2 LABELSCALING(G = (V, E), s, t, F , δ)
3 for each index (a, b) in It,t

4 let Lt,t[a, b] = (X, Y, Pred);
5 find the (a∗, b∗) minimizing max{X, Y };
6 Reconstruct the two disjoint paths from the third components of the labels;

Lemma 2. Let 〈i, j〉 be a node in V ′
2 such that there is a directed path P

from 〈s, s〉 to 〈i, j〉. Let X = F(PH) and Y = F(PV ). When the algorithm
LABELSCALING terminates, then there exists an index pair (a, b) such that the
label (X̃, Ỹ , P red) in Li,j [a, b] satisfies X/(1 + δ)i+j−2 ≤ X̃ ≤ (1 + δ)i+j−2X

and Y/(1 + δ)i+j−2 ≤ Ỹ ≤ (1 + δ)i+j−2Y .

Proof. By induction on i + j. If i + j = 2, the node is 〈1, 1〉 = 〈s, s〉, and
Ls,s[1, 1] = (0, 0, NULL) is the correct result.

Let i+j = l and 3 ≤ l ≤ 2n. Suppose there is a path P from 〈s, s〉 to 〈i, j〉 with
total weight of the horizontal (vertical) edges X (Y ). Without loss of generality,
assume the predecessor of 〈i, j〉 in P is 〈i, j′〉; the vertical case has a similar
proof. Let the path from 〈s, s〉 to 〈i, j′〉 in P be P+, and let X+ (Y +) be the
total weight of the horizontal (vertical) edges of P+. Then, X = X+ +Fj′,j and
Y = Y +. Since j′ < j, i + j′ < i + j, by the induction assumption there exists a
label (X̃+, Ỹ +, P red) such that X+/(1+ δ)i+j′−2 ≤ X̃+ ≤ (1+ δ)i+j′−2X+ and
Y +/(1+δ)i+j′−2 ≤ Ỹ + ≤ (1+δ)i+j′−2Y +. So, when LABELSCALING computes
the label set of the node 〈i, j〉 and enters steps 8 and 9, it will compute a new
label (X̃+ + Fj′,j, Ỹ

+, (〈i, j′〉, (a, b))).
If the algorithm enters steps 12 to 14, the label (X̃++Fj′,j , Ỹ

+, (〈i, j′〉, (a, b)))
will be stored. Let X̃ = X̃+ + F+j′,j , Ỹ = Ỹ +. Then, X̃ = X̃+ + Fj′,j ≤
(1 + δ)i+j′−2X+ + Fj′,j ≤ (1 + δ)i+j′−2(X+ + Fj′,j) ≤ (1 + δ)i+j′−2X ≤ (1 +
δ)i+j−2X , and Ỹ = Ỹ + ≤ (1 + δ)i+j′−2Y + ≤ (1 + δ)i+j−2Y . Similarly, we have
X̃ ≥ X/(1 + δ)i+j−2 and Ỹ ≥ Y/(1 + δ)i+j−2.

If the algorithm skips steps 12 to 14, then there exists a label (X̃, Ỹ , P red).
By the fact that log1+δ X̃�+1 = log1+δ(X̃+ +Fj′,j)�+1 and log1+δ Ỹ �+1 =
log1+δ Ỹ +� + 1, we have X̃ < (1 + δ)(X̃+ + Fj′,j) ≤ (1 + δ)((1 + δ)i+j′−2X+ +
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Fj′,j) ≤ (1 + δ)i+j−2(X+ + Fj′,j) ≤ (1 + δ)i+j−2X , and Ỹ ≤ (1 + δ)Ỹ + ≤
(1 + δ)i+j−2Y + = (1 + δ)i+j−2Y . Similarly, we have X̃ ≥ X/(1 + δ)i+j−2 and
Ỹ ≥ Y/(1 + δ)i+j−2. ��

Theorem 1. The algorithm FPTAS-DAG-MinMax-2DP is an FPTAS for the
MinMax 2DP problem on DAGs.

Proof. First, it is easy to verify that the time complexity of the algorithm is
O(n3(log1+δ lab)2) = O(n5ε−2(ln lab)2), where lab = O(n · maxe∈E F(e)).

Second, we will show that the approximation ratio is 1 + ε. Suppose the op-
timum solution is P1, P2. By Lemma 1, there is a path P in G′

2 corresponding
to P1, P2. Let X = F(PH) = F(P1) and Y = F(PV ) = F(P2). By Lemma 2,
there is a label (X̃, Ỹ , P red) in Lt,t such that X̃ ≤ (1 + δ)2n−2X = (1 + ε)X
and Ỹ ≤ (1 + δ)2n−2Y = (1 + ε)Y . Let (X ′, Y ′, P red′) be the solution returned
by the algorithm and Opt = max{X, Y }. Then, max{X ′, Y ′} ≤ max{X̃, Ỹ } ≤
max{(1 + ε)X, (1 + ε)Y } = (1 + ε) · max{X, Y } = (1 + ε)OPT . Thus, FPTAS-
DAG-MinMax-2DP is an FPTAS for the MinMax 2DP problem on DAGs. ��

For arbitrary constant k ≥ 2, we can generalize the subroutine LABELSCALING

by first constructing Gk = (Vk, Ek) as in Eqs. (1) and (2) from G, using a k-
dimensional array Ld1,...,dk

[1 . . . �, . . . , 1 . . . �], where � = log1+δ lab� + 1, and
then updating L the same way as in LABELSCALING. By induction on k, we
can get the following result similar to Lemma 2.

Lemma 3. Let 〈d1, . . . , dk〉 be a node in Vk such that there is a directed path P
from 〈s, . . . , s〉 to 〈d1, . . . , dk〉. Let Xi = F(Pdi), 1 ≤ i ≤ k, where Pdi denotes the
edges in dimension i of P in Gk. When the algorithm LABELSCALING termi-
nates, there exists an index pair (l1, . . . , lk) such that the label (X̃1, . . . , X̃k, P red)
in Ld1,...,dk

[l1, . . . , lk] satisfies Xi/(1+δ)d1+...+dk−k ≤ X̃i ≤ (1+δ)d1+...+dk−kXi

for 1 ≤ i ≤ k.

Then we can modify the algorithm FPTAS-DAG-MinMax-2DP by setting
δ = (1 + ε)

1
kn−k − 1 to get an FPTAS for the MinMax k-DP problem.

4 The Balanced 2DP Problem

The FPTAS for Balanced 2DP on DAGS is similar to the one described in Sec-
tion 3, using the same subroutine LABELSCALING.

FPTAS-DAG-Balanced-2DP(G = (V, E), s, t, F , ε)

1 δ = (1 + ε)
1

4n−4 − 1;
2 LABELSCALING(G = (V, E), s, t, F , δ)
3 for each index (a, b) in It,t

4 let Lt,t[a, b] = (X, Y, Pred);
5 find (a∗, b∗) minimizing max{X, Y }/ min{X, Y };
6 Reconstruct the 2 disjoint paths from the third entry of the labels ;
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Theorem 2. FPTAS-DAG-Balanced-2DP is an FPTAS for the Balanced 2DP
problem on DAGs.

Proof. First, it can easily be seen that the time complexity of FPTAS-DAG-
Balanced-2DP is O(n3(log1+δ lab)2) = O(n5ε−2(ln lab)2), where lab = O(n ·
maxe∈E F(e)).

Next, we prove that the approximation ratio is 1 + ε. Suppose the optimum
solution is P1, P2. By Lemma 1, there is a path P in G′

2 corresponding to P1, P2.
Let X = F(PH) = F(P1) and Y = F(PV ) = F(P2). By Lemma 2, there
is a label (X̃, Ỹ , P red) in Lt,t such that X/

√
1 + ε = X/(1 + δ)2n−2X ≤ X̃ ≤

(1+δ)2n−2X = X
√

1 + ε and Y/
√

1 + ε = Y/(1+δ)2n−2Y ≤ Ỹ ≤ (1+δ)2n−2Y =
Y

√
1 + ε. Let (X ′, Y ′, P red′) be the solution returned by the algorithm and

Opt=max{X, Y }/ min{X, Y }=max{X/Y, Y/X}. Then, max{X ′/Y ′, Y ′/X ′} ≤
max{X̃/Ỹ , Ỹ /X̃} ≤ max{(1+ε)X/Y, (1+ε)Y/X} = (1+ε) ·max{X/Y, Y/X} =
(1 + ε)OPT . Thus, FPTAS-DAG-Balanced-2DP is an FPTAS for the Balanced
2DP problem on DAGs. ��

We can generalize the algorithm FPTAS-DAG-Balanced-2DP for arbitrary con-
stant k ≥ 2 by setting δ = (1 + ε)

1
2kn−2k − 1 and then using a similar way to

update L as in FPTAS-DAG-Balanced-2DP. The correctness proof follows from
Lemma 3 and a generalization of Theorem 2.

5 The MinSum-MinMax 2DP Problem

In this section, we present an FPTAS for the MinSum-MinMax 2DP problem on
DAGs. The difference between this problem and the MinMax 2DP problem is that
in this problem we should find two disjoint paths with MinMax objective among
the set of two disjoint paths whose total weight is minimized.

In the pseudo-polynomial-time algorithm for the MinMax 2DP problem on
DAGs, for each node 〈i, j〉 in G′

2, if there is a path from 〈s, s〉 to 〈i, j〉, then
we will compute a label to store the information of this path. Now, for the
MinSum-MinMax 2DP problem, instead of keeping information for all paths, we
only store the information of the shortest paths. This can be done by scanning
each node in topological order, and then computing for each node a set of labels
corresponding to the shortest paths. We then can use the scaling method to
convert the pseudo-polynomial-time algorithm to an FPTAS.

SHORTESTLABELSCALING(G = (V, E), s, t, F , δ)

1 Construct G′
2 = (V ′

2 , E′
2) as in Eqs. (3) and (4);

2 Initialize matrices Li,j [k, l] = NULL, for 1 ≤ i, j ≤ n and
1 ≤ k, l ≤ �log1+δ lab� + 1;

3 Ii,j = ∅, for 1 ≤ i, j ≤ n;
4 Is,s = {(1, 1)};
5 Ls,s[1, 1] = (0, 0, NULL);
6 for i ← 1 to n do
7 for j ← 1 to n do
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8 currentmin = +∞;
9 for each (〈i, k〉, 〈i, j〉) ∈ E′

2

10 for each (a, b) ∈ Ii,k

11 let (X, Y, Pred) be the label in Li,k[a, b];
12 if X + Fk,j + Y < currentmin
13 then Ii,j = ∅;
14 set all entries of Li,j to NULL;
15 currentmin = X + Fk,j + Y ;
16 if X + Fk,j + Y == currentmin
17 let c = �log1+δ(X + Fk,j)� + 1;
18 if Li,j [c, b] == NULL
19 then Li,j [c, b] = (X + Fk,j , Y, (〈i, k〉, (a, b)));
20 Ii,j = Ii,j ∪ {(c, b)};
21 for each (〈k, j〉, 〈i, j〉) ∈ E′

2

22 for each (a, b) ∈ Ik,j

23 let (X, Y, Pred) be the label in Lk,j [a, b];
24 if X + Y + Fk,i < currentmin
25 then Ii,j = ∅;
26 set all entries of Li,j to NULL;
27 currentmin = X + Y + Fk,i;
28 if X + Y + Fk,i == currentmin
29 let d = �log1+δ(Y + Fk,i)� + 1;
30 if Li,j [a, d] == NULL
31 then Li,j [a, d] = (X, Y + Fk,i, (〈k, j〉, (a, b)));
32 Ii,j = Ii,j ∪ {(a, d)};

FPTAS-DAG-MinSum-MinMax-2DP(G = (V, E), s, t, F , ε)

1 δ = (1 + ε)
1

2n−2 − 1;
2 SHORTESTLABELSCALING(G = (V, E), s, t, F , δ);
3 for each index (a, b) in It,t

4 let Lt,t[a, b] = (X, Y, Pred);
5 find (a∗, b∗) minimizing max{X, Y };
6 Reconstruct the two disjoint paths from the third entry of the labels ;

Lemma 4. Let 〈i, j〉 be a node in V ′
2 and P a shortest path from 〈s, s〉 to 〈i, j〉.

Let X = F(PH) and Y = F(PV ). When the algorithm SHORTEST
LABELSCALING terminates, then there exists an index pair (a, b) such that the
label (X̃, Ỹ , P red) in Li,j [a, b] satisfies X/(1 + δ)i+j−2 ≤ X̃ ≤ (1 + δ)i+j−2X

and Y/(1 + δ)i+j−2 ≤ Ỹ ≤ (1 + δ)i+j−2Y .

Proof. First, a simple induction on the topological order of the nodes shows
that when SHORTESTLABELSCALING terminates, the labels of each node cor-
respond to shortest paths to the nodes.

Second, similar to the proof of Lemma 2, we can show there is a label
(X̃, Ỹ , P red) satisfying X/(1 + δ)i+j−2 ≤ X̃ ≤ (1 + δ)i+j−2X and Y/(1 +
δ)i+j−2 ≤ Ỹ ≤ (1 + δ)i+j−2Y . ��

From Lemma 4 and an analysis similar to the proof of Theorem 1, we obtain the
following result.
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Theorem 3. FPTAS-DAG-MinSum-MinMax-2DP is an FPTAS for the
MinSum-MinMax 2DP problem on DAGs. ��
We can generalize the subroutine SHORTESTLABELSCALING for arbitrary con-
stant k≥2 in a similar way as in the generalization of subroutine LABELSCALING

in Section 3, and thus give an FPTAS for the the MinSum-MinMax k-DP problem
on DAGs.

6 The MinSum-MinMin 2DP Problem

In this section, we present an efficient polynomial-time algorithm for the
MinSum-MinMin 2DP problem on DAGs.

We introduce some notions. Let Z
2 = {(X, Y ) | X, Y ∈ Z} be the set of all

pairs of positive integers. We define the relationship ‘<’ on Z
2 as: (X, Y ) <

(X ′, Y ′) if and only if X < X ′ or (X = X ′ and Y < Y ′). The operation ‘+’ on
two elements of Z

2 is defined as (X, Y ) + (X ′, Y ′) = (X + X ′, Y + Y ′).
We first use PSA to transform the given graph G into G′

2, but with different
edge weights than before. We let the weight of an edge in G′

2 be an element
of Z

2. Let F ′ : E′
2 �→ N be the new weight function on G′

2. For a horizontal
edge (〈i, j〉, 〈i, j′〉), F ′((〈vi, vj〉, 〈vi, vj′〉)) = (Fj,j′ , Fj,j′), and for a vertical edge
(〈i, j〉, 〈i′, j〉), F ′((〈i, j〉, 〈i′, j〉)) = (Fi,i′ , 0). For G′

2 and weight function F ′, we
compute the shortest path P from 〈s, s〉 to 〈t, t〉. It can be shown that the two
disjoint paths from s to t in G corresponding to P in G′ are an optimum solution
to the MinSum-MinMin 2DP problem.

DAG-MinSum-MinMin-2DP(G = (V, E), s, t, F)

1 Construct G′
2 = (V ′

2 , E′
2) as in Eq. (3) and (4);

2 for each 〈i, j〉 ∈ V ′
2

3 let di,j = (+∞,+∞);
4 pi,j = NULL;
5 ds,s = (0, 0);
6 for i ← 1 to n do
7 for j ← 1 to n do
8 for each (〈i, k〉, 〈i, j〉) ∈ E′

2

9 if di,k + (Fk,j , Fk,j) < di,j

10 then di,j = di,k + (Fk,j , Fk,j);
11 pi,j = 〈i, k〉;
12 for each (〈k, j〉, 〈i, j〉) ∈ E′

2

13 if dk,j + (Fk,i, 0) < di,j

14 then di,j = dk,j + (Fk,i, 0);
15 pi,j = 〈k, j〉;
16 Reconstruct the two disjoint paths from pt,t;

It can easily be shown that di,j is the value of the shortest path from 〈s, s〉 to
〈i, j〉 with respect to the weight function F ′.

When the algorithm DAG-MinSum-MinMin-2DP terminates, for any node
〈i, j〉 in G′

2, let P be the path from 〈s, s〉 to 〈i, j〉 constructed by tracing back-
wards from pi,j to 〈s, s〉. Let F ′(P ) = (X, Y ), then by the definition of F ′, we
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have F(P ) = X and F(PH) = Y . Since (X, Y ) is minimized, X is also mini-
mized, and for any path P ′ from 〈s, s〉 to 〈i, j〉 such that F(P ′) = X , we have
F(PH) ≤ F(P ′

H). We also have Y ≤ X − Y , that is, F(PH) ≤ F(PV ). Suppose
for contradiction, F(PH) > F(PV ), then by the symmetry of the construction
of G′

2, there is another path P ′ that PH = P ′
V and PV = P ′

H . Thus, F(P ′) = X
and F(P ′

V ) = F(PH) = Y > PV = F(P ′
H), contradicting the fact that (X, Y ) is

minimal.
The above result is also true for 〈t, t〉. This proves the correctness of the

algorithm. The running time of the algorithm is O(|E′|) = O(n3).
We note that our algorithm can easily be generalized to the case of k > 2, in

contrast to the algorithm by Yang et al. [12]. When k > 2, we construct G′
k as in

Eqs. (1) and (2), and again set the weight of each edge in G′
k to be an element

of Z
2. The first integer of the weight is the sum of the weights of all k paths,

and the second integer is the weight of the minimum weight path. Then, we use
a standard shortest path algorithm to compute the shortest path in G′ under
the new weight function.
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Abstract. An acyclic edge colouring of a graph is a proper edge colour-
ing having no 2-coloured cycle, that is, a colouring in which the union of
any two colour classes forms a linear forest. The acyclic chromatic index
of a graph is the minimum number k such that there is an acyclic edge
colouring using k colours and is usually denoted by a′(G). Determining
a′(G) exactly is a very hard problem (both theoretically and algorith-
mically) and is not determined even for complete graphs. We show that
a′(G) ≤ Δ(G) + 1, if G is an outerplanar graph. This bound is tight
within an additive factor of 1 from optimality. Our proof is constructive
leading to an O(n log Δ) time algorithm. Here, Δ = Δ(G) denotes the
maximum degree of the input graph.

1 Introduction

Graph colouring is one of the well-studied areas of graph theory, having many
practical applications. Vertex and edge colouring problems have many variants.
In this paper, we consider a variant of edge colouring known as the acyclic edge
colouring. An edge colouring of a graph is proper if no pair of incident edges
receive the same colour. A proper colouring C of the edges of a graph G is
acyclic if there is no 2-coloured (bichromatic) cycle in G with respect to C. To
put it differently, the subgraph induced by the union of any two colour classes
of C is a linear forest. We are interested in finding the minimum number k such
that there exists an acyclic edge colouring of G using k colours. The number
k, known as the acyclic chromatic index of G is generally denoted a′(G). The
notion of acyclic colouring was introduced by Grünbaum [5].

There is also a vertex analogue of acyclic edge colouring and any acyclic edge
colouring of a graph G is an acyclic vertex colouring of its line graph L(G) and
the converse is also true. The acyclic chromatic index and its vertex analogue
can be used to bound other parameters like oriented chromatic number and star
chromatic number of a graph G, both of which have many practical applications
such as in wavelength routing in optical networks [4,7].

All graphs we consider are simple and finite. Throughout this paper, Δ =
Δ(G) denotes the maximum degree of a graph G. It is quite easy to see that
a′(G) ≥ χ′(G) ≥ Δ for any graph G. Here χ′(G) denotes the chromatic index
of G (the minimum number of colours used in any proper edge colouring of
G). Determining a′(G) exactly is a very hard problem (both theoretically and
algorithmically) and is not solved even for complete graphs.

M.-Y. Kao and X.-Y. Li (Eds.): AAIM 2007, LNCS 4508, pp. 144–152, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Alon, McDiarmid and Reed [1] first obtained a linear upper bound of 64Δ on
a′(G). Molloy and Reed [8] improved this by a refined analysis to a′(G) ≤ 16Δ.
Muthu, Narayanan and Subramanian [9] improved the bound to a′(G) ≤ 5.91Δ
for graphs G with girth (the length of the shortest cycle) at least 9.

Alon, Sudakov and Zaks conjectured ([2]) that a′(G) ≤ Δ + 2 for every graph
G. The conjecture was shown [2] to be true for almost every d-regular (d fixed)
graph. Later, Nesetril and Wormald [11] strengthened the latter result by show-
ing that a′(G) ≤ d + 1 for almost every d-regular graph.

The bounds mentioned before are based on existential arguments. There are
very few constructive results which actually produce an acyclic edge colouring.
Skulrattankulchai [12] gives a linear time algorithm for obtaining an acyclic
5-edge colouring of subcubic graphs. Recently, Muthu, Narayanan and Subra-
manian obtained an efficient (almost linear time in the size of the graph) con-
structive acyclic (Δ + 1)-edge colouring of grid-like graphs [10]. Subramanian
[13] showed by analyzing a simple polynomial time greedy heuristic that one can
obtain an acyclic O(Δ log Δ) colouring of any graph G. We are not aware of any
other constructive result on acyclic edge colouring.

Note that it is NP-complete to determine if a′(G) ≤ 3 for an arbitrary sub-
cubic graph G, as shown in [3]. It follows from the reduction used in [3] that it
is in fact NP-hard to determine a′(G) even when G is a 2-degenerate subcubic
graph. A graph is 2-degenerate if one can reduce the given graph to a graph
on 2 vertices by iteratively removing vertices of degree at most 2. The class of
graphs we have studied here (outerplanar graphs) are a non-trivial subclass of
2-degenerate graphs.

In this work we prove that a′(G) ≤ Δ + 1 for outerplanar graphs. This adds
further evidence that the conjecture stated in [2] is perhaps true. The other
known classes of graphs for which the conjecture has been verified include ran-
dom regular graphs ([2], [11]), graphs having large girth [2], subcubic graphs [12]
and grid-like graphs [10].

Our proof is constructive and we also describe an O(n log Δ) time algorithm
in section 3. For bounded values of Δ, the complexity is linear in n. Formally,
we prove the following result.

Theorem 1 (Outerplanar). Let G = (V, E) be an outerplanar graph of max-
imum degree Δ. Then, a′(G) ≤ Δ + 1. Also, an acyclic (Δ + 1)- edge colouring
can be obtained in O(n logΔ) time where n denotes the number of vertices in G.

1.1 Definitions and Notation

Throughout the paper, we focus only on edge colourings and we often omit the
word ”edge” and simply say colourings. A connected graph G is said to be 2-
connected if the removal of a vertex does not produce a disconnected graph. If
G is connected, then a block of G is a maximal 2-connected subgraph of G. For
any vertex v ∈ V (G), we use dv to denote the degree of v. With respect to an
acyclic colouring C of a graph H , let Cv denote the set of colours used by edges
incident on any specific vertex v ∈ V (H). We use the standard notation [k] to
denote the set {1, . . . , k}.
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Definition 1. A graph is outerplanar if there exist a planar embedding of G in
which all the vertices lie on the unbounded face.

2 Colouring

We first state certain facts relating to outerplanar graphs and acyclic edge colour-
ings. These standard results can be found in [14].

Fact 1. Any subgraph of an outerplanar graph is also outerplanar.

Fact 2. Every outerplanar graph has a vertex of degree at most 2.

Fact 3. If G is an outerplanar graph on 4 or more vertices, then G has two
non-adjacent vertices of degree at most 2.

Fact 4. Any two-connected outerplanar graph has a unique hamiltonian cycle.

We will also be using the following easy to verify observation.

Fact 5. If a′(G) = η and if G has H1, . . . , Hk as its blocks (maximal 2-connected
subgraphs), then an acyclic η-edge colouring of G can be obtained from any col-
lection of acyclic η-edge colourings of H1, . . . , Hk after suitably permuting the
colours of edges incident at cut-vertices.

Proof. Note that every cycle in a graph should lie within a block. Hence, it is
essentially sufficient to first obtain acyclic edge colourings of all blocks. Now, to
extend this to an acyclic colouring of G, one only needs to rename (permute) the
colours assigned to edges incident at cut-vertices. Now, using the block-cutpoint
tree (defined in Section 3) to guide the renaming, one can extend the colouring
of blocks to a colouring of G. ��

The following lemma gives some insight into the structural properties of outer-
planar graphs.

Lemma 1. Every two-connected outerplanar graph G has a vertex of degree two
adjacent to a vertex of degree at most four.

Proof. Since G is two-connected and outerplanar, there is always a vertex of
degree 2 in G (using Fact 2).

Noting that no degree 2 vertex in G can be part of any chord edge of the
unique hamiltonian cycle of G (Fact 4), it follows that every vertex in G can
have at most 2 neighbours of degree exactly 2.

Supposing that each vertex of degree 2 has no neighbour having degree at
most 4, consider the outerplanar subgraph H obtained by deleting all vertices
of degree 2 from G (Fact 1). The degree of any vertex in H is at least 3. This
contradicts Fact 2. Thus our claim holds. ��

A stronger version of the above is shown in [6] (Lemma 2 in this reference) which
implies Lemma 1 but the proof is more complicated.
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Lemma 2 (See [6]). Let G be an outerplanar graph with minimum degree at
least 2. Then G satisfies one of the following two properties :

(a) There exists a vertex of degree 2 having a neighbour of degree ≤ 3.
(b) There exist two vertices of degree 2 having a common neighbour of degree 4.

We will frequently use the following powerful extension lemma in the proof.

Lemma 3 (Extension Lemma). Let G be any graph with maximum degree Δ
and u be a degree 2 vertex in G with neighbours v and w. Let C be any [k]-acyclic
edge colouring of G \ u, for some k > Δ. If |Cv ∪ Cw| < k, C can be extended to
get an acyclic edge colouring of G using k colours.

Proof. Colour (u, v) using any c ∈ [k] \ (Cv ∪ Cw). For the edge (u, w), use some
arbitrary colour c′ ∈ [k] \ (Cw ∪ {c}). Note that |Cw| ≤ Δ − 1 and hence c′ can
always be found. Since c /∈ Cw, the colouring of the edges (u, v) and (u, w) cannot
introduce any (c, c′)-coloured cycle. ��

We now prove our main result.

Proof (Theorem 1). We use induction on the number of vertices. If G is a graph
on ≤ 3 vertices, then a′(G) ≤ Δ + 1 clearly. Assume the statement is true for
each outerplanar graph on fewer than |V (G)| vertices. Using Fact 5, we can
assume without loss of generality, that G is 2-connected, and hence has a unique
hamiltonian cycle.

By Lemma 2, either (i) G has a vertex u of degree 2 having a neighbour with
degree at most 3 or (ii) G has two vertices u and x each of degree 2 and have
a common neighbour of degree 4. In each case, u is the vertex which will be
removed for applying inductive hypothesis. For the rest of the proof, we assume
that v and w denote the two neighbours of u with degree of v being at most 4.

By inductive hypothesis, G \ u can be acyclically edge coloured using colours
from [Δ(G \ u) + 1] ⊆ [Δ + 1]. Let Cv and Cw be the respective sets of colours
used on edges incident at v and w in the acyclic colouring of G \ u. We have the
following cases.

Case 1 (Δ(G\u) = Δ−1). Using inductive hypothesis, G\u can be acyclically
edge coloured using colours from [Δ]. Since Δ + 1 /∈ Cv ∪ Cw, we can apply the
Extension Lemma and obtain an acyclic [Δ + 1]-colouring of G.

Hence, for the rest of the proof, we may assume that Δ(G \ u) = Δ.

Case 2 ((v, w) /∈ E). In this case, we consider the graph H = (G \ u) ∪ (v, w).
We have Δ(H) ≤ Δ and H is also 2-connected and outerplanar. By inductive
hypothesis, we have an acyclic (Δ + 1)-colouring of H from which we get an
acyclic (Δ + 1)-colouring of G \ u. In this colouring, the colour used on (v, w) is
missing from Cv ∪ Cw and hence we can apply the Extension Lemma and obtain
an acyclic colouring of G with [Δ + 1].

Henceforth, we assume that Δ(G \ u) = Δ and also that (v, w) ∈ E.
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Fig. 1. Outerplanar graph with vertex u of degree 2

Case 3 (dv = 3). Since (v, w) ∈ E, Cv ∩Cw 
= ∅. Then |Cv ∪Cw| ≤ |Cv|+|Cw|−1 ≤
2 + (Δ − 1) − 1 < Δ + 1. By applying the Extension Lemma, we get an acyclic
colouring of G with [Δ + 1].

Case 4 (dv = 4). By Lemma 2, there exists a vertex x such that u and x are
both degree 2 vertices in G having v as a common neighbour. Since there can be
no chord edge incident at a degree 2 vertex of a 2-connected outerplanar graph,
it follows that u, v and x appear in that order in the unique hamiltonian cycle
of G.

Using the Extension Lemma, we can assume without loss of generality that
Cv ∪ Cw = [Δ + 1]. Also, |Cv ∩ Cw| ≥ 1 since (v, w) ∈ E. Since, |Cv| = 3 and
|Cw| ≤ Δ−1, it follows that |Cv ∩Cw| = 1. Without loss of generality, we assume
that Cv = {1, 2, 3} and Cw = {3, 4, . . . , Δ+1} and 3 is used on (v, w). See Fig. 1.

Without loss of generality, assume that the hamiltonian cycle edge (v, x) is
coloured with 1. Since x has degree 2 in G, for some c ∈ Cw \ {3}, there is no
c-coloured edge incident at x and hence there is no (1, c)-coloured path joining
v and w in (G \ u) \ (v, w). Thus, we can safely colour (u, v) with c and (u, w)
with 1 to get an acyclic edge colouring of G.

This completes the proof of the bound stated in Theorem 1. The description and
analysis of the algorithm are presented in the next section. ��

3 Algorithmic Aspects

The proof of a′(G) ≤ Δ + 1 given above for outerplanar graphs is constructive.
In this section, we show how to implement the various steps involved efficiently,
leading to an O(n logΔ) time algorithm. Here, n denotes the number of vertices.
We also use m to denote the number of edges. The procedure is described in the
pseudocode BlockColOP(B) given below. In order to keep the discussion simple
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and brief, we assume that the input B is a 2-connected outerplanar graph (also
known as a block). This does not result in any loss of generality for the following
reasons.

First, it is easy to see that blocks (maximal 2-connected subgraphs) of an
outerplanar graph G = (V, E) are also outerplanar. Moreover, since |E| ≤ 2|V |
for outerplanar graphs, the blocks and cut-vertices of G can be computed in O(n)
time using standard search techniques like DFS. Once this is done, we compute
the block-cutpoint graph BC(G) of G in O(n) time. This is a bipartite graph
H = (A, B, F ) where A is the set of articulation vertices of G and B is the set
of blocks of G. For each a ∈ A, b ∈ B, we join them by an edge if and only if
a ∈ V (b). It is easy to verify that BC(G) is a forest in general and is a tree if G
is connected.

We now invoke BlockColOP(B) for each block B and obtain an acyclic colour-
ing of B in O(mB log ΔB) time where mB denotes the number of edges in B and
ΔB denotes the maximum degree of B. Since m =

∑
B mB, this takes a total of

O(m log Δ) = O(n log Δ) time.
Now, since articulation vertices are shared by more than one block, we need

to permute the colourings of edges incident at articulation vertices so as to
remove potential conflicts among edges incident at articulation vertices. For this
purpose, we first root the tree BC(G) at an articulation vertex a of G and order
the articulation vertices and blocks of G based on the preorder-traversal order
of BC(G).

For each articulation vertex a of G considered in this order, let B0 be the
parent of a and B1, . . . , Bk be its children. When we come to process a, we
distribute the remaining colours of [Δ +1] not used on the edges from B0 which
are incident at a, to the remaining edges (from other blocks B1, . . . Bk) incident
at a. For each block B considered in this order, we permute colour classes of
edges in B so as to match the colours used on edges incident at a (the parent of
B) with those distributed by a. This takes care of conflicts at each articulation
vertex a of G. It is easy to see that this can be achieved in O(n) time with
suitable data structures.

Hence it suffices to show that 2-connected outerplanar graphs can be acycli-
cally edge coloured in O(n log Δ) time. Now onwards, we assume that G is a
2-connected outerplanar graph.

We assume the adjacency list representation for storing G. The two occur-
rences of each edge (i, j) (one in Adj[i] and the other in Adj[j]) are linked to
each other. The set of colours used so far on edges incident at a vertex u are
stored in a height balanced binary search tree (BST) Col(u) ordered by the
colour values. In addition, we assume two queues Q3 and Q4 where Q3 is a
queue on those vertices of degree 2 having a neighbour of degree ≤ 3. Q4 is a
queue on those vertices of degree 2 having a neighbour v of degree 4 such that
v has a neighbour of degree 2. All degrees are with respect to the graph being
considered in the current recursive invocation. All data structures mentioned
before are assumed to be globally available in each recursive call.
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Algorithm 1. BlockColOP(B)
1: if B is a single edge (u, v) then
2: colour (u, v) with 1 and RETURN.
3: end if
4: Find a vertex u having exactly two neighbours v and w in B such

that either (i) degree of v in B is at most 3 or (ii) degree of v in B
is exactly 4 and v has a neighbour x having degree 2 in B.

5: if Δ(B \ u) < Δ(B) or if (v, w) /∈ E(B) then
6: Obtain an acyclic (Δ(B′) + 1)-colouring of B′ = (B \ u) ∪ {(v, w)}

by invoking BlockColOP(B′).
7: From this, obtain an acyclic (Δ(B′) + 1)-colouring of B \ u.
8: Applying the Extension Lemma, obtain an acylic (Δ(B) + 1)-colouring

of B and RETURN.
9: end if

10: if the degree of v in B is exactly 3 then
11: Obtain an acylic (Δ(B \ u) + 1)-colouring of B \ u by invoking

BlockColOP(B \ u).
12: Applying the Extension Lemma, obtain an acylic (Δ(B) + 1)-colouring

of B and RETURN.
13: end if
14: if the degree of v in B is exactly 4 then
15: Obtain an acylic (Δ(B \ u) + 1)-colouring of B \ u by invoking

BlockColOP(B \ u).
16: Colour (u, w) with the colour used for (v, x) and colour (u, v) with

a colour c ∈ Cw \ Cx to obtain an acylic (Δ(B) + 1)-colouring of B
and RETURN.

17: end if

3.1 Correctness and Complexity

Since BlockColOP is essentially the proof of Theorem 1 stated as an algorithm,
the correctness follows immediately. So we focus on the complexity of the algo-
rithm.

By adding the edge (v, w) to B\u whenever required, we ensure that the input
graph to each recursive call is always 2-connected. Also, since each recursive call
works on a graph with one vertex less than its parent call, there are at most n
recursive calls.

One can build Q3 and Q4 initially once in the first invocation of BlockColOP
in O(n) time by scanning the adjacency lists. After this, for each recursive call,
we only need to update Q3 and Q4 and do not need to compute them from
scratch. It is easy to check that this update can be done in O(1) time. Hence,
total time required in all recursive calls for Step 4 is O(n).

After u has been found in Step 4, checking each of the if conditions in Steps 5,
10 and 14 can be done in O(1) time per recursive call. Step 7 involves removing
the colour of the edge (v, w) from each of Col(v) and Col(w) if (v, w) is not part
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of E(B) and has been explicitly added to B′ to make it 2-connected. This can
be done in O(log Δ) time per recursive call.

We now need to estimate the time required for an application of the Extension
Lemma. Recall from its proof that we need to find a colour c /∈ (Col(v) ∪ Col(w))
and also a colour c′ /∈ (Col(w) ∪ {c}). For j = 1, 2, . . ., we keep finding the j-th
smallest colour which is not in Col(w) until we find one which is not also in
Col(v). Since there exists such a colour and since |Col(v)| ≤ 3, we don’t need to
go beyond j = 4. For each j, the j-th smallest colour which is absent from Col(w)
can be found in O(log Δ) time by maintaining the size of each subtree at its root
in the BST associated with Col(w). Similarly, one can find c′ also. Thus, the
total time required for all applications of Extension Lemma is O(n log Δ) since
there are at most n recursive calls. Step 16 is similar to applying to Extension
Lemma and this also requires the same time on the whole.

Thus, the overall time required by BlockColOP(B) is O(n log Δ) in the worst
case. Hence, an arbitrary outerplanar graph can be acyclically (Δ + 1)-edge
coloured in O(n log Δ) time.

4 Conclusions

As mentioned in Section 1, it is NP-hard to determine a′(G) even for 2-degenerate
graphs. The class of graphs we have studied here (outerplanar graphs) are a non-
trivial subclass of 2-degenerate graphs. We have also obtained tight estimates
on a′(G) for a few other subclasses of 2-degenerate graphs and we are pursu-
ing further theoretical and algorithmic work in this direction. An interesting
algorithmic question is to design (if it is possible) a linear, that is O(n), time
algorithm for (Δ + 1)-acyclic edge colouring of outerplanar graphs.

It seems possible to handle graphs of bounded tree-width using a similar
approach. We are currently working on it. We are also trying to extend these
results to planar graphs.
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11. J. Nešetřil and N. C. Wormald. The acyclic edge chromatic number of a random
d-regular graph is d + 1. Journal of Graph Theory, 49(1):69–74, 2005.

12. San Skulrattanakulchai. Acyclic colorings of subcubic graphs. Information Process-
ing Letters, 92:161–167, 2004.

13. C R Subramanian. Analysis of a heuristic for acyclic edge colouring. Information
Processing Letters, 99:227–229, 2006.

14. Douglas B West. Introduction to Graph Theory. Prentice Hall India, 2001.



Smallest Bipartite Bridge-Connectivity

Augmentation (Extended Abstract)

Pei-Chi Huang1, Hsin-Wen Wei1, Wan-Chen Lu1,�, Wei-Kuan Shih1,
and Tsan-sheng Hsu2,�

1 Department of Computer Science, National Tsing-Hua University, Hsinchu, Taiwan
{peggy,bertha,wanchen,wshih}@rtlab.cs.nthu.edu.tw

2 Institute of Information Science, Academia Sinica, Taipei, Taiwan
tshsu@iis.sinica.edu.tw

Abstract. This paper addresses two augmentation problems related to
bipartite graphs. The first, a fundamental graph-theoretical problem, is
how to add a set of edges with the smallest possible cardinality so that
the resulting graph is 2-edge-connected, i.e., bridge-connected, and still
bipartite. The second problem, which arises naturally from research on
the security of statistical data, is how to add edges so that the resulting
graph is simple and dose not contain any bridges.

1 Introduction

A graph is said to be k-edge-connected if it remains connected after the removal
of any set of edges whose cardinality is less than k. Finding the smallest set of
edges, the addition of which makes an undirected graph k-edge-connected, is a
fundamental problem with many important applications that has been studied
extensively; readers may refer to [5,7,19] for a comprehensive survey. Studies
of augmentation problems in bipartite graphs can be found in [9,11,12]. In this
paper, we focus on augmenting bipartite graphs. A graph is componentwise 2-
edge-connected if each connected component is either 2-edge-connected, or it is
an isolated vertex. Figure 1(a) shows an example of a bipartite graph. A smallest
2-edge-connectivity augmentation of (a) is shown in Figure 1(b), and a smallest
componentwise 2-edge-connectivity augmentation of (a) is shown in Figure 1(c).

Note that there is a linear-time algorithm for the smallest bridge-connectivity
augmentation problem on the general graph that does not have a bipartite con-
straint [4]. In [11], Jensen et al. proposed a polynomial time algorithm that solves
the smallest bridge-connectivity augmentation problem on a graph that has par-
tition constraints, such as bipartite graph, in O(n(m+n log n) log n) time, where
m is the number of distinct edges in the input graph. We are unaware of any pre-
vious results for the smallest componentwise bridge-connectivity augmentation
problem.

� Supported in part by National Science Council (Taiwan) Grants NSC 94-2213-E-
001-014 and NSC 95-2221-E-001-004.

M.-Y. Kao and X.-Y. Li (Eds.): AAIM 2007, LNCS 4508, pp. 153–166, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



154 P.-C. Huang et al.

a

b

c

1 2 3

4 5 6

a

b

c

1 2 3

4 5 6

a

b

c

1 2 3

4 5 6

(a) (b) (c) (d)

sum

sum

a b c

1

2

3

4

5

6

5 2 8

3 3 10

3 2 12

10 20

11 24

3 4 7 14

28 25 35 88

Fig. 1. (a) A bipartite graph. (b) A smallest 2-edge-connectivity augmentation of
(a). (c) A smallest componentwise 2-edge-connectivity augmentation of (a). (d) A 2-
dimensional cross-tabulated table with some suppressed cells.

Motivation

The related componentwise 2-edge-connectivity augmentation problem arises
naturally from research on the security of statistical data [1,2,3,15]. To pro-
tect sensitive information in a cross-tabulated table, it is a common practice to
suppress some of the cells in the table, so that the resulting table does not leak
important or confidential information. This protection problem can be reduced
to an augmentation problem in bipartite graphs [6,8,12,13,14,16,17,18].

Figure 1(a) and Figure 1(d) illustrate the relationship between our augmen-
tation problem and the table protection problem. Figure 1(d) is a 2-dimensional
cross-tabulated table with some suppressed cells. In the bipartite suppressed
graph constructed from the table, the vertices correspond to the columns and
rows, and the edges correspond to the suppressed cells, as shown in Figure 1(a).
It has been proven [6] that the value of a suppressed cell can be revealed to
an adversary if and only if it is a bridge in the constructed suppressed graph.
Therefore, since there are three bridges in our suppressed graph, an adversary
could infer the values of the three corresponding cells. For instance, let Ci,j be
the cell at the intersection of row i and column j, let S∗,j be the sum of the
cells in column j, and let Si,∗ be the sum of the cells in row i. Then, the value
of C1,a must be 1 because it is equal to S1,∗ − C1,b − C1,c. The value of C5,b

is arbitrary. After suppressing three more cells, namely, C1,c, C2,c, and C3,c,
the values of the suppressed cells cannot be inferred. This corresponds to the
smallest componentwise 2-edge-connectivity augmentation shown in Figure 1(c).

Our approach and results

We first solve the problem of a smallest 2-edge-connectivity augmentation of
bipartite graphs, and then extend the proposed algorithms to deal with the
componentwise 2-edge-connectivity case. To solve the first problem, we transform
the input graph G into a well-known data structure called a bridge-block forest.
A block of a graph G is a maximal 2-edge-connected subgraph (or component)
of G. We assume B and W are the two bipartite sets of vertices in G. A block
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Algorithm 1. Finding a smallest 2-edge-connectivity augmentation of a bipar-
tite graph G
1: procedure FS2Aug(G)
2: Let T = BB(G);
3: E = ∅;
4: repeat
5: switch (T )
6: Case 1: T is a tree
7: Case 1.1: T is an easy tree
8: Case 1.1.1: T is an ETC tree

E′= ETCT(T ); {∗ Algorithm 2 ∗}
9: Case 1.1.2: T is an anti-ETC tree with more than 4 leaves

E′= AETC(T ); {∗ Algorithm 3 ∗}
10: Case 1.1.3: T is an anti-ETC tree with at most 4 leaves

Use the solution shown in Figure 2 to find E′;
11: Case 1.2: T is a general tree
12: Case 1.2.1: T has no hybrid leaves

E′= BGTWAug(T ); {∗ Algorithm 4 ∗}
13: Case 1.2.2: T has hybrid leaves

E′= HTAug(T ); {∗ Algorithm 6 ∗}
14: Case 2: T is a forest
15: Case 2.1: T contains no isolated vertices
16: Case 2.1.1: T is a light forest with |TB| = |TW |

E′= FTConversion(T ); {∗ Algorithm 7 ∗}
17: Case 2.1.2: T is a light forest with |TB| > |TW |

E′= BGTW FTConversion(T ); {∗ Algorithm 8 ∗}
18: Case 2.1.3: T is a forest with hybrid leaves

E′= H FTConversion(T ); {∗ Algorithm 9 ∗}
19: Case 2.2: T contains a set of isolated vertices S
20: Case 2.2.1: T − S contains at least 2 white and 2 black vertices

Use the method in §4.2.1 to find E′;
21: Case 2.2.2: T − S contains either 1 white or 1 black vertex

Use the method in §4.2.2 to find E′;
22: Case 2.2.3: T − S is null

E′= ISOF(T ); {∗ Algorithm 10 ∗}
23: Let E = E ∪ E′;
24: Let T = BB(T ∪ E′);
25: until Case 1 is executed
26: return E;
27: end procedure

that only contains vertices in B (respectively, W ) is called a black (respectively,
white) block, while a block that contains both vertices in B and W is called
a hybrid block. A vertex in the bridge-block forest is white if its corresponding
block is white. Black and hybrid vertices in the bridge-block forest are defined
similarly. Hereafter, we focus on a bridge-block forest, rather than a graph.

Let an easy tree be a tree with an equal number of black and white leaves
and no hybrid leaves. Our main algorithm first solves the problem on an easy
tree, and then solves it on a general tree. Finally, we solve the case where the
input graph is a forest. In addition, the edge set added to the bridge-block forest
by our algorithms can be transformed into the corresponding edge set added
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to the input graph G. The algorithms run in sequential liner time and O(log n)
parallel time on an EREW PRAM using a linear number of processors. A high-
level description of the algorithm for the 2-edge-connectivity case is given in
Algorithm 1. The main result of this paper is stated in Theorem 1 and will be
proved in the remaining sections. Due to space limitation, we omit some details
which can be found in [10].

Theorem 1. Algorithm 1 runs in sequential linear time and O(log n) parallel
time on an EREW PRAM using a linear number of processors.

2 Preliminaries

In this paper, all graphs are undirected, and have neither self-loops nor multiple
edges. Let a graph G = (V, E), where |V | = n and |E| = m. Then, for a vertex
set V ′, let G − V ′ be G without the vertices and their adjacent edges in V ′.
Note that, for an edge set E′, G − E′ denotes G without the edges in E′, and
G∪E′ denotes G with the edges in E′ added to it. An edge whose endpoints are
a vertex u and a vertex v is denoted as (u, v). A bipartite graph is defined as a
graph in which the set of vertices can be partitioned into two disjoint sets such
that no edge connects vertices in the same set.

Two vertices of a graph are 2-edge-connected if they are in the same connected
component and remain so after the removal of any single edge. A set of vertices
is 2-edge-connected if each pair of its vertices is 2-edge-connected; similarly, a
graph is 2-edge-connected if its set of vertices is 2-edge-connected. A bridge is an
edge of a graph G, the removal of which would increase the number of connected
components of G by one. Given a graph G with at least three vertices, a smallest
2-edge-connectivity augmentation of G, denoted by aug2e(G), is a set of edges
with the minimum cardinality whose addition makes G 2-edge-connected. A
graph is componentwise 2-edge-connected if it does not have a bridge. A smallest
componentwise 2-edge-connectivity augmentation of G is denoted by augc2e(G).
A block in a graph is an induced subgraph of a maximal 2-edge-connected subset
of vertices. If a block consists of all the nodes in a connected component of G, it
is called an isolated block. A singular connected component is one formed by an
isolated vertex, and a singular block is one with exactly one vertex. The bridge-
block graph of an undirected graph G, denoted by BB(G), is defined as follows.
Each block is represented by a vertex of BB(G). When all the blocks in G are
represented by vertices, BB(G) becomes a forest. Each bridge in G corresponds
to an edge in BB(G) and vice versa. In this paper, let G be the input graph and
we use T and BB(G), interchangeably to denote the bridge-block forest for an
input graph G.

3 Case 1: When BB(G) Is a Tree

Assume BB(G) contains � leaves that can be divided into the following three
categories: B is a set of black leaves, W is a set of white leaves, and H is a
set of hybrid leaves. Without loss of generality, we assume that |B| ≥ |W |.
Furthermore, we say that BB(G) is B-dominated if |B| > |W | + |H |.
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Algorithm 2. ETC tree connection
1: procedure ETCT(T ) {∗ where T is an ETC tree with � leaves ∗}
2: Find i∗ such that vi∗ and vi∗+�/2 are in different colors;
3: Let Vin = {vi∗+1, vi∗+2, . . . , v(i∗+�/2)−1}, and Vout = {v1, v2, . . . , vi∗−1} ∪

{v(i∗+�/2)+1, v(i∗+�/2)+2, . . . , v�};
4: Number the black (respectively, white) leaves in Vin starting from 1 as b1, b2, . . .

(respectively, w1, w2, . . .);
5: Number the black (respectively, white) leaves in Vout starting from 1 as b′

1, b′
2, . . .

(respectively, w′
1, w′

2, . . .);
6: Let E′ = {(bi, w

′
i) | ∀i} ∪ {(b′

i, wi) | ∀i};
7: return E′ ∪ {(vi∗ , vi∗+�/2)};
8: end procedure

3.1 Lower Bound on aug2e(BB(G))

Let LOWt2e(BB(G)) = max{�(|B|+ |W |+ |H |)/2�, |B|} when BB(G) is a tree.

Lemma 1. |aug2e(BB(G))| ≥ LOWt2e(BB(G)).

Corollary 1. If BB(G) is B-dominated, then LOWt2e(BB(G)) = |B|.

3.2 Case 1.1: When BB(G) Is an Easy Tree

Recall that an easy bridge-block tree T for a bipartite graph is one with an equal
number of white and black leaves and no hybrid leaves. We number the leaves
of T via a depth-first ordering from 1 to �, i.e., the number of leaves in T , and
denote them by v1, v2, . . . , v�. Note that, since � is even, LOWt2e(BB(G)) = �/2.
By Lemma 1, |aug2e(T )| ≥ �/2. Our algorithm, described below, always adds �/2
edges. Thus, after adding edges, if we can prove the resulting graph is 2-edge-
connected, the solution found is a smallest 2-edge-connectivity augmentation
of T .

If T is an easy tree and there exists i such that vi and vi+�/2 are two different-
colored leaves, we say that the tree is an easy-to-connect or ETC tree. An easy
tree that is non-ETC is called an anti-ETC tree. Note that both ETC and anti-
ETC trees are easy trees. Our algorithm considers three cases: (1) an ETC tree,
(2) an anti-ETC tree with more than four leaves, and (3) an anti-ETC tree with
at most four leaves.

Lemma 2. Let T be the input tree and Tnew = T ∪ Eadded, where Eadded is a
set of added edges. Then, each added edge e ∈ Eadded is not a bridge in Tnew.

Case 1.1.1: When BB(G) Is an ETC tree. Our algorithm for finding
aug2e(BB(G)) when BB(G) is an ETC tree is shown in Algorithm 2.

Lemma 3. For a subtree T ′ of T , let ea be the antenna edge of T ′ and Tnew =
T ∪ Eadded, where Eadded is a set of edges added to T . If there exists an edge
e = (va, vb) ∈ Eadded, such that va ∈ T ′ and vb �∈ T ′ or vice versa, then ea is not
a bridge in Tnew.

Lemma 4. Let Eadded be the set of edges derived by Algorithm 2 and let Tnew =
T ∪Eadded. Then Tnew does not contain any bridge; that is, Eadded = aug2e(T ).
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Algorithm 3. Anti-ETC tree connection
1: procedure AETC(T ) {∗ where T is an anti-ETC tree with � leaves and � > 4 ∗}
2: Find leaves va, va+1, va+�/2 and v(a+1)+�/2 such that va and va+�/2 are black, and

va+1 and v(a+1)+�/2 are white;
3: Let E1 = {(va, v(a+1)+�/2), (va+1, va+�/2)};
4: Let Vin = {va+2, va+3, . . . , v(a+�/2)−1};
5: Let Vout = {v1, v2, . . . , va−1} ∪ {v(a+1)+�/2+1, v(a+1)+�/2+2, . . . , v�};
6: Number the black (respectively, white) leaves in Vin starting from 1 as b1, b2, . . .

(respectively, w1, w2, . . .);
7: Number the black (respectively, white) leaves in Vout starting from 1 as b′

1, b′
2, . . .

(respectively, w′
1, w′

2, . . .);
8: Let E′ = {(bi, w

′
i) | ∀i} ∪ {(b′

i, wi) | ∀i};
9: return E′ ∪ E1;

10: end procedure

Case 1.1.2: When BB(G) is an anti-ETC tree with more than four
leaves. In this case, we can find two consecutive leaves, denoted, respectively,
by va and va+1 (a < �/2), such that va and va+1 are different colors. Without
loss of generality, we assume that va is a black leaf; therefore, va+1 is white.
Furthermore, we can find va+�/2, which must be black, and v(a+1)+�/2, which
must be white. The steps of the proposed algorithm for this case are given in
Algorithm 3.

Lemma 5. Let Eadded be the set of edges derived by Algorithm 3. Then, Tnew =
T ∪ Eadded contains no bridges.

Case 1.1.3: When BB(G) Is an anti-ETC tree with at most four leaves.
Note that an easy tree has an even number of leaves; therefore, a tree can have
either two leaves or four leaves in this case. Clearly an easy tree with two leaves
must be an ETC tree. Hence, we only need to consider an anti-ETC tree with
exactly four leaves. Depending on the tree structure, we have the solution for
each case of an anti-ETC tree with exactly four leaves, as shown in Figure 2.

3.3 Case 1.2: When BB(G) Is a General Tree

Case 1.2.1: When BB(G) has no hybrid leaves. Note that, if BB(G) has
no hybrid leaves and |B| > |W |, then we apply Algorithm 4.

Lemma 6. Algorithm 4 is correct.

Fig. 2. All the possible cases of an anti-ETC tree with exactly four leaves
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Algorithm 4. When the input has no hybrid leaves and |B| > |W |.
1: procedure BGTWAug(T )
2: Let bi and wi be, respectively, the ith black and white leaf;
3: Let V = b1, b2, . . . , b|B|, w1, w2, . . . , w|W | and V ′ = b|W |+1, b|W |+2, . . . , b|B|;
4: Let T ′ = T − V ′;
5: if T ′ is an ETC tree then
6: E1=ETCT(T ′); {∗ Algorithm 2 ∗}
7: else if T ′ is an anti-ETC tree with more than 4 leaves then
8: Let E1=AETC(T ′); {∗ Algorithm 3 ∗}
9: else if T ′ is an anti-ETC tree with at most 4 leaves then

10: Use the solution illustrated in Figure 2 to find E1;
11: end if
12: if there is only one white vertex in T i.e., there is no white leaf in T then
13: Let u be the white vertex in T and E2 = {(bi, u) | 1 ≤ i ≤ |B|};
14: else
15: Let u1, u2 be two white vertices in T ;
16: Let E2 ={(bi, uj) | |W + 1| ≤ i ≤ |B|, j ∈ {1, 2} , where uj is not the neighbor of

bi}; {∗ add edges between a white vertex and the remaining black leaves ∗}
17: end if
18: return E1 ∪ E2;
19: end procedure

Algorithm 5. H assignment
1: procedure HAssign(T ) {∗ where T is a tree with hybrid leaves ∗}
2: if |B| > �(|B| + |W | + |H|)/2	 then
3: All hybrid leaves are recolored white;
4: else
5: Arbitrarily select |B| − |W | hybrid leaves to be recolored white;
6: The remaining 
(|H| − |B| + |W |)/2� hybrid leaves are recolored white;
7: The rest are recolored black;
8: end if
9: Let T ′ be the resulting tree;

10: return T ′;
11: end procedure

Case 1.2.2: When BB(G) has hybrid leaves. Note that if an endpoint of
an added edge is a hybrid leaf, the other endpoint of the edge can be either
black or white. To handle this case, we first transform a tree with hybrid leaves
into a tree without hybrid leaves using an algorithm called HAssign, described
in Algorithm 5. Then, we apply Algorithm 4 to the recolored tree derived by
Algorithm 5. The steps followed in this case are described in Algorithm 6.

Lemma 7. Algorithm 6 is correct and optimal. That is, aug2e(T ) = aug2e(T ′),
where T = BB(G) and T ′ is the recolored tree returned by Algorithm 5.

4 Case 2: When BB(G) Is a Forest

In this section, we present a number of algorithms that convert a forest into a
tree. After this transformation, we can apply the algorithms presented in Section
3 to add edges such that no bridges exist in the final graph.
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Algorithm 6. When T has hybrid leaves
1: procedure HTAug(T )
2: T ′= HAssign(T ); {∗ Algorithm 5 ∗}
3: E′= BGTWAug(T ′); {∗ Algorithm 4 ∗}
4: return E′;
5: end procedure

Recall that a leaf in a forest is a degree-1 vertex; and B, W , and H are,
respectively, the sets of black, white, and hybrid leaves in BB(G). Without loss
of generality, we assume that |B| ≥ |W |. Let B′, W ′, and H ′ be, respectively,
the sets of isolated black, white, and hybrid vertices in BB(G). We now present
a simple lower bound for |aug2e(BB(G))|.

Let LOWf2e(BB(G)) = max{2|B′|+|B|, 2|W ′|+|W |, �(2|B′|+2|W ′|+2|H ′|+
|B| + |H | + |W |)/2�} = p + max{|B| + |B′| − |W ′| − |H ′|, |W | + |W ′| − |B′| −
|H ′|, �(|B|+ |H |+ |W |)/2�}, where p is the number of isolated vertices in BB(G).
Note that if BB(G) is a tree, LOWt2e(BB(G)) = LOWf2e(BB(G)).

Lemma 8. |aug2e(BB(G))| ≥ LOWf2e(BB(G)).

4.1 Case 2.1: When BB(G) Contains No Isolated Vertices

In this subsection, we assume that BB(G) dose not have any isolated vertices.
First, we consider the case where BB(G) dose not contain any hybrid leaves.
This is called a light forest ; otherwise, it is called a general forest . In a light
forest, the trees can be classified into three different types: (1) TB={ T | T , a
tree with only black leaves in T }; (2) TW ={ T | T , a tree with only white leaves
in T }; and (3) TBW ={ T | T , a tree with at least one black and one white leaf
in T }.

Without loss of generality, we assume that |TB| ≥ |TW |. Next, we propose
algorithms for two cases: (1) |TB| = |TW |, and (2) |TB| > |TW |. For the remainder
of this section, let F = BB(G).

Case 2.1.1 and Case 2.1.2: When BB(G) is a light forest and |TB| ≥
|TW |. The steps for Case 2.1.1 and case 2.1.2 are shown in Algorithm 7 and
Algorithm 8, respectively.

Theorem 2. F ∪ Eadded is a tree in which Eadded is the set of edges derived by
Algorithm 7 or 8. Furthermore, |LOWf2e(BB(G))| = |LOWf2e(BB(BB(G) ∪
Eadded))| + |Eadded|.

Case 2.1.3: When BB(G) has hybrid leaves. If one endpoint of an added
edge is a hybrid leaf, the other endpoint of that edge can be either black or white.
For a general forest, we first transform a forest with hybrid leaves into a forest
without hybrid leaves using Algorithm 5. Then, we apply Algorithm 8 to convert
a forest into a tree. The steps followed in this case are shown in Algorithm 9.

Lemma 9. Algorithm 9 finds aug2e(BB(G)) when BB(G) is a forest containing
no isolated vertices.
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Algorithm 7. Forest-Tree Conversion
1: procedure FTConversion(F ) {∗ F is a light forest with |TB| = |TW | = k and |TBW | =

z ∗}
2: Number each tree in TB as 1, 3, . . . , 2k − 1;
3: Number each tree in TW as 2, 4, . . . 2k;
4: Number each tree in TBW as 2k + 1,2k + 2, . . . 2k + z;
5: Give two labels to each tree as follows:
6: for the tree i from 1 to 2k + z do
7: if the tree ∈ TB then
8: Assign the labels 2i − 1 and 2i + 1 to two leaves chosen arbitrarily;
9: else if the tree ∈ TW then

10: Assign the labels 2i − 2 and 2i to two leaves chosen arbitrarily;
11: else if the tree ∈ TBW then
12: Assign the labels 2i − 1 and 2i to two different colored leaves. Here, 2i − 1 is

assigned to the black leaf and 2i is assigned to the white leaf;
13: end if
14: end for
15: E1 = {(v2j , v2j+1) |for all labeled leaves v2j and v2j+1, 1 ≤ j ≤ 2k + z − 1};
16: return E1;
17: end procedure

4.2 Case 2.2: When BB(G) Contains Isolated Vertices

Recall that each isolated black (respectively, white) block is an isolated black
(respectively, white) vertex in G. Let b′i (respectively, w′

i) be the ith isolated
black (respectively, white) vertex in G, and let h′

1,i, h′
2,i be arbitrary black and

white vertices, respectively, in the ith isolated hybrid block of G.
Let G′ be the graph obtained by removing the vertices and edges from the

isolated blocks of G. There are three cases, which we describe below.
Case 2.2.1: G′ contains at least two white and two black vertices. Without loss
of generality, we assume that |B′| ≥ |W ′|, which yields five sub-cases: (1) Case
2.2.1.1: |W ′| > 0; (2) Case 2.2.1.2: |W ′| = 0, |B′| > 0 and |H ′| > 0; (3) Case
2.2.1.3: |W ′| = 0, |B′| = 0 and |H ′| > 0; (4) Case 2.2.1.4: |W ′| = 0, |B′| > 0,
|H |+ |W | > 0, and |H ′| = 0; (5) Case 2.2.1.5: |W ′| = 0, |B′| > 0, |H |+ |W | = 0,
and |H ′| = 0.
Case 2.2.2: G′ contains either a white or a black vertex. Without loss of gen-
erality, we assume that G′ contains exactly one white vertex, which yields two
sub-cases: (1) Case 2.2.2.1: there is no white vertex in G − G′; (2) Case 2.2.2.2:
there is a white vertex in G − G′.
Case 2.2.3: G′ is null.

Case 2.2.1: G′ has at least two white and two black vertices. Let E′ be
the set of added edges to be decided in each sub-case; T̂ = BB(BB(G)∪E′); B̂′,
Ŵ ′, and Ĥ ′ be the respective sets of isolated black, white, and hybrid blocks in
T̂ ; and B̂, Ŵ , and Ĥ be the respective sets of black, white, and hybrid leaf-blocks
in T̂ .

Case 2.2.1.1: |W ′| > 0. Since we assume that |B′| ≥ |W ′|, |B′| > 0, let
E′ = {(b′i, w

′
i) | 1 ≤ i ≤ |W ′|}. Then, |B̂| = |B| + |W ′|, |Ŵ | = |W | + |W ′|,
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Algorithm 8. |TB| > |TW | Forest-Tree Conversion
1: procedure BGTW FTConversion(F ) {∗ where F is a light forest with |TB| = k + x,

(x ≥ 1), |TW | = k, and |TBW | = z ∗}
2: if TBW = TW = φ then
3: Pick a leaf from each tree in TB and number them as b1, b2, . . . ,bk+x;
4: Let E1 = {(bi, u) | 1 ≤ i ≤ k + x and let u be a white vertex of TB with the

number br , where i = r and 1 ≤ r ≤ k + x};
5: else
6: Find a subset T ′

B of TB, such that |T ′
B| = k;

7: Let T ′
B = TB − T ′

B and |T ′
B| = x;

8: Let F ′ = T ′
B ∪ TW ∪ TBW ;

9: E1= FTConversion(F ′); {∗ Algorithm 7 ∗}
10: Pick a leaf from each tree in T ′

B and number them as b1, b2, . . ., bx;
11: Number the remaining white leaves of BB(F ′ ∪ E1) as w1, w2, ,. . . wy; {∗ as-

suming there are y remaining white leaves ∗};
12: if x ≤ y then
13: Let E2 = {(bi, wi) | 1 ≤ i ≤ x};
14: else
15: Let E2 = {(bi, wi) | 1 ≤ i ≤ y} ∪ {(bi, u) | y < i ≤ x, u is an arbitrary white

leaf.};
16: end if
17: end if
18: return E1 ∪ E2;
19: end procedure

Algorithm 9. When the input is a forest that has hybrid leaves
1: procedure H FTConversion(F ) {∗ where F is a forest with hybrid leaves ∗}
2: T ′= HAssign(F ); {∗ Algorithm 5 ∗}
3: E′=BGTW FTConversion(T ′) {∗ Algorithm 8 ∗}
4: return E′;
5: end procedure

Ĥ = H , |Ŵ ′| = 0, |B̂′| = |B′| − |W ′|, and Ĥ ′ = H ′. Thus, LOWf2e(T̂ ) ≥
LOWf2e(BB(G)) − |W ′|. We have reduced Case 2.2.1.1 to Case 2.2.1.2, Case
2.2.1.3, Case 2.2.1.4, Case 2.2.1.5 or Case 2.1.

Case 2.2.1.2: |W ′| = 0, |B′| > 0 and |H ′| > 0. Let k = min{|B′|, |H ′|}
and E′ = {(b′i, h

′
2,i) | 1 ≤ i ≤ k}. Then, |B̂| = |B| + k, Ŵ = W , |Ĥ | =

|H | + k, |Ŵ ′| = 0, |B̂′| = |B′| − k, and |Ĥ ′| = |H ′| − k. Thus, LOWf2e(T̂ ) ≥
LOWf2e(BB(G))−k. We have reduced Case 2.2.1.2 to Case 2.2.1.3, Case 2.2.1.4,
Case 2.2.1.5 or Case 2.1.

Case 2.2.1.3: |W ′| = 0, |B′| = 0, and |H ′| > 0. Let w, h, and bi be, respectively,
arbitrary white, hybrid, and ith black leaves in BB(G′) if they exist. Let k =
min{|B|, |H ′|} and E1 = {(bi, h

′
2,i) | 1 ≤ i ≤ k}. If |H ′| > k, then let |H ′′| =

|H ′| − k and E2 = {(h′
1,i, h

′
2,i+1)) | 1 ≤ i < 	|H ′′|/2
}. Furthermore, when

|H ′′| is odd, let E3 = {(h′
1,|H′|, w)} if w exists; otherwise, E3 = {(h′

1,|H′|, h)}.

Then, |B̂| = |B| − k, |Ĥ | = |H | + k + |H ′′|, |Ĥ ′| = 0, and E′ = E1 ∪ E2 ∪ E3.
Thus, LOWf2e(T̂ ) ≥ LOWf2e(BB(G)) − |E′|. We have reduced Case 2.2.1.3
to Case 2.1.
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Case 2.2.1.4: |W ′| = 0, |B′| > 0, |H | + |W | > 0, and |H ′| = 0. Let k =
min{|B′|, |H | + |W |}; wi be a white vertex in the ith leaf of H ∪ W , and E′ =
{(bi, wi) | 1 ≤ i ≤ k}. Then, |B̂| = |B|+ |k|, |Ŵ |+ |Ĥ | = |H |+ |W |−k, |Ŵ ′| = 0,
|B̂′| = |B′| − k, and |Ĥ ′| = 0. Thus, LOWf2e(T̂ ) ≥ LOWf2e(BB(G))− k, so we
have reduced Case 2.2.1.4 to either Case 2.2.1.5 or Case 2.1.

Case 2.2.1.5: |W ′| = 0, |B′| > 0, |H | + |W | = 0, and |H ′| = 0. Now, we
only have black leaves and isolated black vertices. Let w be a white vertex
in G′, and E′ = {(b′i, w) | 1 ≤ i ≤ |B′|}. Note that, in this case, 2|B′| + |B| >

�(2|B′|+2|W ′|+2|H ′|+|B|+|H |+|W |)/2�. Therefore, B̂ = B∪B′, Ŵ = ∅, Ĥ = ∅,
Ŵ ′ = ∅, B̂′ = ∅, and Ĥ ′ = ∅, such that LOWf2e(T̂ ) ≥ LOWf2e(BB(G)) − |E′|.
We have reduced Case 2.2.1.5 to Case 2.1.

Case 2.2.2: G′ contains either one white or one black vertex. Without
loss of generality, we assume that G′ consists of exactly one white vertex w.
Hence, |H | = 0 and G′ is a star with center w; BB(G) is also a star. There
are two sub-cases: (1) G − G′ contains a white vertex, and (2) G − G′ does not
contain a white vertex.

Case 2.2.2.1: there is no white vertex in G − G′. All isolated vertices in G
are black, |W ′| = 0 and |H ′| = 0, such that |LOWf2e(BB(G′))| = |B|. Let
E′ = {(b′i, w) | ∀i}.

Lemma 10. For Case 2.2.2.1, aug2e(BB(G)) = aug2e(BB(G′)) ∪ E′, and
BB(G) ∪ aug2e(BB(G)) is a multi-graph.

Case 2.2.2.2: there is one white vertex in G − G′. Let b be a black leaf in
BB(G′). Since BB(G′) is a star with a white center, b must exist. Let w′ be a
white vertex in an isolated block (i.e., in G−G′), and let G′′ = BB(G′)∪{(w′, b)}.
Note that the number of isolated blocks in BB(G) ∪ {(w′, b)} is one less than in
BB(G), and the number of black leaves in BB(G′′) is one less than in BB(G′).
However, there is one more white leaf in BB(G′′) than in BB(G′). Thus, we have
transformed Case 2.2.2.2 into Case 2.2.1.

Lemma 11. For Case 2.2.2.2, |LOWf2e(BB(BB(G) ∪ {(w′, b)}))| =
|LOWf2e(BB(G))| − 1.

Case 2.2.3: G′ is null. Let qB, qW , and qH be the numbers of isolated black,
white, and hybrid blocks, respectively. Without loss of generality, we assume
that qB ≥ qW . Our algorithm is shown in Algorithm 10.

Theorem 3. |LOWf2e(BB(G))| = |LOWf2e(BB(BB(G)∪Eadded))|+ |Eadded|,
where Eadded is the set of added edges returned by Algorithm 10.

5 Componentwise 2-Edge-Connectivity Augmentation

In this section, we present Algorithm 11, i.e., C2Aug, which solves the compo-
nentwise 2-edge-connectivity augmentation problem. If the leaves in a graph are
not all black, i.e., there is a white or a hybrid leaf in the graph, we can use the
minimum number of added edges to make all tree edges non-bridge edges.
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Algorithm 10. When G′ is null, i.e., BB(G) consists of isolated vertices
1: procedure ISOF(F ) {∗ where F is a forest that consists of isolated vertices S ∗}
2: if qB = 0 then {∗ qH must be at least 2; ∗}
3: Let E1 = {(h′

1,2i−1, h′
2,2i) | 1 ≤ i ≤ 
qH/2�};

4: if qH is odd number then
5: E′ = E1 ∪ (h′

1,qH −1, h′
2,qH

);
6: end if
7: else
8: if qB > qW + qH then
9: Let E1 = {(b′

i, w
′
i) | 1 ≤ i ≤ qW } ∪ {(b′

i+qW
, h′

2,i) | 1 ≤ i ≤ qH};
10: E′ = E1 ∪ {(b′

i+qW +qH
, w) | 1 ≤ i ≤ qB − qW − qH and w is a white vertex

in S};
11: else if qB = qW + qH then
12: Let E1 = {(b′

i, w
′
i) | 1 ≤ i ≤ qW } ∪ {(b′

i+qW
, h′

2,i) | 1 ≤ i ≤ qH};
13: E′ = E1;
14: else
15: Let E1 = {(b′

i, w
′
i) | 1 ≤ i ≤ qW } ∪ {(b′

i+qW
, h′

2,i) | 1 ≤ i ≤ qB − qW };
16: Let E2 = {(h′

1,2i−1+qW −qB
, h′

2,2i+qW −qB
) | 1 ≤ i ≤ 
(qH + qW − qB)/2�};

17: if (qH + qW − qB) is odd then
18: Let E2 = E2 ∪ (h′

1,qH −1, h′
2,qH

);
19: end if
20: E′ = E1 ∪ E2;
21: end if
22: end if
23: return E′;
24: end procedure

Algorithm 11. Componentwise 2-edge-connectivity augmentation
1: procedure C2Aug(G)
2: Let T = BB(G);
3: Let S be the set of isolated vertices in T ;
4: if there are leaves in T then
5: if the leaves are not all black then
6: T ′ = T − S;
7: else {∗ Without loss of generality, assume that all leaves are black. ∗}
8: if there is an isolated vertex v in S whose corresponding block contains a

white vertex then
9: Let T ′ = T − S ∪ {v};

10: else
11: T ′ = T − S;
12: end if
13: end if
14: E=FS2Aug(T ′); {∗ Algorithm 1 ∗}
15: else
16: E = ∅;
17: end if
18: return E;
19: end procedure
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Theorem 4. Algorithm 11 is correct and optimal. Furthermore, it runs in se-
quential linear time and O(log n) parallel time on an EREW PRAM using a
linear number of processors.

6 Concluding Remarks

We have considered two augmentation problems related to bipartite graphs. The
first is a fundamental graph-theoretical problem. The second focuses on how to
suppress the smallest amount of sensitive information in a cross-tabulated table,
so that the resulting table does not leak important or confidential information.
The latter is a fundamental issue concerning the security of statistical data. In
both cases, after adding edges, the resulting graph is simpler than the input
graph and does not contain any bridges. It can be either a simple graph or,
if necessary, a multi-graph. The proposed approach determines whether or not
such an augmentation is feasible. The algorithms can be trivially parallelized to
run in optimal O(log n) time using a linear number of EREW processors. Details
are omitted and can be found in [10].
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1.1 Problems and Summary of Results
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direction to each edge {u, v} ∈ E, i.e., Λ({u, v}) is either (u, v) or (v, u). The
weighted outdegree of u is d+

Λ(u), where d+
Λ(u) denotes

∑
{u,v}∈E

Λ({u,v})=(u,v)
w({u, v}).

We consider the problem of finding an orientation such that the maximum
weighted outdegree is minimum. This basic problem has several applications.
For example, such orientations can be used to construct efficient dynamic data
structures for graphs that support fast vertex adjacency queries under a series
of edge insertions and edge deletions [3]. Also, it can be considered a variation
of art gallery problems (e.g., [4,11]) and unrelated parallel machine scheduling
(e.g., [10]). Especially, the polynomial time (in)approximability of the latter
problem has been intensively studied, as discussed in the next subsection.

Previous studies show that our problem can be solved in polynomial time if
all the edge weights are identical [1,9,15], while it is NP-hard in general [1].
Also, a (2 − 1/�L(G)�)-approximation algorithm with O(m2) running time was
presented in [1], where L(G) = maxH⊆G {

∑
{u,v}∈E(H) w({u, v})/|V (H)|}.

In this paper, we consider the problem from the viewpoint of polynomial time
approximability and inapproximability. Our results are summarized as follows:

− We present a (2−1/k)-approximation algorithm with running time O(m3/2 ·
log m · log k · log Δ∗ + m2), where k, m and Δ∗ denote the maximum weight
of the edges, the number of the edges and the optimal value, respectively.

− For special cases in which the weight of each edge is either 1 or k, a refined
algorithm achieves a better approximation factor, 2 − 2/(k + 2), also with
running time O(m3/2 · log m · log k · log Δ∗ + m2).

− We prove that there is no polynomial time approximation algorithm whose
factor is smaller than 3/2, unless P=NP. (More precisely, in case where
weights of all the edges are either 1 or a positive integer k ≥ 2, no pseudo-
polynomial time algorithm achieves an approximation ratio smaller than
1 + 1/k.) That is, for k = 2, the above algorithm is best possible with
respect to the approximation ratio.

Note that the new 2 − 1/k-approximation ratio in this paper and the previous
2 − 1/�L(G)� one in [1] are incomparable; sometimes the former is better than
the latter, and vice versa. For example, we have an instance for which the latter
algorithm outputs 5/3-factor solution, while the former achieves approximation
ratio 1.5 (see Figure 6 in [1]). Due to space limitations, the formal proofs have
been omitted in this paper. Please refer to the full paper for a complete version.

1.2 Related Work

Graph orientation itself is a quite basic, natural and important problem in graph
theory and combinatorial optimization (see Chapter 61 of [13]). However, most
of the studies consider the problems of finding an orientation with lower outde-
gree satisfying some special graph properties, such as high connectivity, small
diameter, no-cycle and so on [2,5,8], and very few studies consider just the min-
imization of the maximum outdegree (or indegree) [1,15].

As mentioned in the previous subsection, another aspect of the minimization
of the maximum outdegree is scheduling. For an undirected graph, let us consider
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the vertices as the machines and the edges as the jobs. Then our orientation
problem can be regarded as a special case of the job assignment problem, in which
the minimization of the maximum outdegree means to minimize the finishing
time of all the jobs [12]. From the viewpoint of scheduling, our problem has some
restriction, that is, 1) each job must be assigned to exactly one of pre-determined
two machines, and 2) the processing time of each job does not depend on the
machines. Therefore, our problem is a special case of scheduling on unrelated
parallel machines (R||Cmax in the now-standard notation), given a set J of jobs,
a set M of machines, and the time pij ∈ Z

+ taken to process job j ∈ J on machine
i ∈ M , its goal is to find a job scheduling so as to minimize the makespan, i.e.,
the maximum processing time of any machine. In [10], Lenstra, et al. gave a
polynomial time 2-approximation algorithm that is based on the LP-formulation
for the general R||Cmax and its 3/2 inapproximability result (see also [14].)

Note that the 3/2 inapproximability result of Lenstra, et al. cannot be directly
applied to the restricted assignment variant in which every job can be processed
on a constant number of machines. In our problem, each job associated with
an edge can be assigned only to one of the two machines associated with the
two nodes of the edge, which means that their proof is not applicable to our
case. Also note that their proof of inapproximability uses the assumption that
the processing time of each job may vary depending on which machine it is
processed on. Thus, our result provides a stronger inapproximability bound to
the problem.

2 Preliminaries

2.1 Definitions

Let G = (V, E, w) be a simple, undirected, weighted graph, where V , E, and
w denote a set of vertices, a set of edges, and an integral weight function, w :
E → Z

+, respectively. Let wmax and W be the maximum weight of edges and
the total weight of edges, respectively. We denote the undirected edge whose
endpoints are u and v where u < v in lexicographic order by eu,v, or simply
{u, v}, and denote the directed edge (or arc) from u toward v, by (u, v). An
orientation Λ of the undirected graph G is an assignment of direction to each
edge {u, v} ∈ E, i.e., (u, v) or (v, u). A directed path P of length l from a vertex
v0 to a vertex vl in a directed graph G = (V, A, w) is a set {(vi−1, vi) | (vi−1, vi) ∈
A, i = 1, 2, . . . , l and vi �= vj for any i and j} of arcs, which is also denoted by
a sequence 〈v0, v1, . . . , vl〉 for simplicity. For the path P , the path of its reverse
order is denoted by P , i.e., P = 〈vl, vl−1, . . . , v0〉. Especially, a directed path P
satisfying vl = v0 is called an l-directed cycle.

Let d+
Λ(v) and d−Λ(v) under an orientation Λ denote the total weight of outgo-

ing arcs and that of incoming arcs of a vertex v in the weighted directed graph
G(V, A, w), which we call the weighted outdegree and the weighted indegree of v,
respectively. Throughout the paper, we use the words “outdegree” and “inde-
gree” to represent these weighted degrees. Then the cost of an orientation Λ for
a graph G is defined to be ΔΛ(G) = maxv∈V {d+

Λ(v)}. For an undirected graph
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G = (V, E) and a node u ∈ V , we define Γ (u) = {v | {u, v} ∈ E}, the set of
neighbors of u. Given an orientation Λ of G, we define ΓΛ(u) = {v | {u, v} ∈
E and Λ({u, v}) = (u, v)}, the set of neighbors of u on G under Λ.

Every orientation has the following trivial lower bound caused by the maxi-
mum weight of edges:

Proposition 1. ([1]) For a graph G and any orientation Λ, ΔΛ(G) ≥ wmax. 
�

2.2 Problem and Basic Operations

The problem that we consider in this paper is the minimization of the maximum
outdegree of a given undirected weighted simple graph. To specify the class of
weight function of the graph, we formally define our problem as follows.

Problem: S-Minimum Maximum Outdegree (S-MMO)

Input: An undirected graph G = (V, E) and a weight function w : E → S,
where S is a set of weights.

Output: An orientation Λ that minimizes max{d+
Λ(u) | u ∈ V }.

Namely, if we have no restriction about the weight function (just it should be a
positive integral function), our problem is Z

+-MMO. In this paper, we mainly
consider the problem for the case of S = {1, 2, . . . , k}. We also consider a special
case in which the range of w is restricted to S = {1, k} with k ≥ 2.

Let OPT denote an optimal orientation. We say a graph orientation algo-
rithm is a σ-approximation algorithm if ALG(G)/OPT (G) ≤ σ holds for any
undirected graph G, where ALG(G) is the objective value of a solution obtained
by the algorithm for G, and OPT (G) is that of an optimal solution. In the
following we use OPT (G) or Δ∗ to denote the optimal value.

Here we introduce three basic operations; Reverse, Up-To-Roots and
Solve-1-MMO.

– Reverse does the following: Given an orientation Λ of graph G and a di-
rected path P = 〈u0, u2, . . . , ul〉 in G under Λ, update Λ by replacing P with
P , i.e., let Λ(eui,ui+1) = (ui+1, ui) for i = 0, . . . , l − 1. Note that the outde-
gree for each vertex remains the same after the operation if P is a directed
cycle and w(eui,ui+1)’s are all identical. We call this operation ReverseCy-
cle if u0 = ul.

– Up-To-Roots determines an orientation Λ for a given simple forest G, in the
following manner: First fix an arbitrary root for each connected component
of G (it is a tree). Then for every edge e, orient Λ(e) towards the root of the
tree containing e. Note that for a forest with weighted edges Up-To-Roots
operation returns an optimal solution, whose value is wmax [1].

– Solve-1-MMO outputs an optimal orientation Λ for a given undirected
graph G with identical weights. It is shown in [1] that the running time of
Solve-1-MMO is O(m3/2 ·log(Δ∗/k)) for {k}-MMO, in which the log factor
comes from the binary search.
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3 Approximation Algorithms

In this section, we present three pseudo-polynomial time approximation algo-
rithms for the S-MMO problem. The first and the second algorithms (in Sections
3.1 and 3.2) work for S-MMO with S = {1, 2, . . . , k}, both of which are based
on the replication of weighted edges, and their approximation ratios are 2 and
2 − 1/k, respectively. The third algorithm (in Section 3.3) for {1, k}-MMO is a
refined version of the second one, and its approximation ratio is 2−2/(k+1) for
k ≥ 3. In Section 3.4, we show how to improve the running times of the three
approximation algorithms to polynomial time.

3.1 Majority Voting Algorithm

We first present a basic 2-approximation algorithm, named Majority. Al-
though Majority can be considered a variation of Lenstra-Shmoys-Tardos al-
gorithm [10] (LST, for short), which is based on the LP-rounding and has ap-
proximation factor 2, Majority is combinatorial and provides basic ideas for
the algorithms presented later. Also it is much faster than LST, by Corollary 1.

The idea of the algorithm is as follows: We replace each edge e = {u, v}
in G with w(e) edges of weight 1 between u and v, and then we obtain an
undirected multi-graph G′ with W =

∑
e∈E w(e) edges. We find an optimal

MMO orientation Λ′ for G′, and then we decide an orientation of each weighted
edge on G according to Λ′ by the majority voting manner; in Λ′, for each eu,v ∈
E, some of replicated edges of eu,v are oriented from u to v and the others
from v to u. Let us denote the number of edges from u to v (resp., from v to
u) in Λ′ by fu→v (resp., fv→u). Since we assume the original graph is simple,
fu→v +fv→u = w(eu,v) holds. By using these, we decide the orientation Λ of the
original G by the following manner: For eu,v ∈ E,

Λ(eu,v) :=

{
(u, v) if fu→v ≥ fv→u,

(v, u) otherwise.
(1)

In the case of a tie the direction is determined according to a lexicographic order.
We call this algorithm Majority.

Algorithm Majority

1. For graph G, construct G′ by replacing each edge e with w(e) edges.
2. Find an optimal orientation Λ′ of G′ by using Solve-1-MMO.
3. Decide the orientation Λ of G according to (1).
4. Return Λ.

Theorem 1. For S = {1, . . . , k}, Algorithm Majority approximates S-MMO
within a factor of 2 and runs in O(W 3/2 · log Δ∗) time.

Proof. Since Steps 1, 2 and 3 take O(W ), O(W 3/2 log Δ∗) and O(W ) time,
respectively, the running time of Majority is O(W 3/2 log Δ∗), in total. The
approximation factor 2 is immediately obtained by the result of [10]. 
�
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3.2 Cycle Canceling Algorithm

Here, we describe a new algorithm named Cycle-Canceling, which improves
Majority; the approximation ratio is 2 − 1/k.

Algorithm Cycle-Canceling

1. For graph G, construct G′ by replacing each edge e with w(e) edges.
2. Find an optimal orientation Λ′ of G′ by using Solve-1-MMO.
3. Decide the (partial) orientation Λ of G according to (2) and obtain,

GΛ′ = (V, FΛ′ ) as described later.
4. If GΛ′ has an l-directed cycle with l ≥ 3, apply ReverseCycle

and go to 3.
5. For undecided edges of Λ, apply Up-To-Roots.
6. Return Λ.

In the first and second steps of the algorithm, do as Majority; construct
G′ (replicate each edge) and then find an optimal orientation Λ′. After that we
decide the orientation of the original problem by

Λ(eu,v) :=

⎧
⎪⎨

⎪⎩

(u, v) if fv→u = 0,
(v, u) if fu→v = 0,
− otherwise,

(2)

where − means “not decided yet.” Note that the direction of the edges decided
by this operation is essentially same as the one of Λ′; the cost of the orientation
does not change.

Here, we introduce a new operation, cycle cancellation, which updates the
orientation to more desirable orientation without changing the outdegrees of all
the nodes. To this end, we construct another undirected graph GΛ′ = (V, FΛ′),
where FΛ′ = {eu,v ∈ E | fu→v �= 0 and fv→u �= 0 in Λ′}. From GΛ′ , we find
an l-cycle with l ≥ 3, say C = 〈v1, v2, . . . , vl, v1(≡ vl+1)〉, if exists. (From here,
when we mention l-cycles with l ≥ 3, we just use “cycles” for simplicity, because
we do not consider 2-cycles in this paper.) Let c = min{fvi→vi+1 | i = 1, . . . , l},
which is a positive integer, by the definition of FΛ′ . We then go back to G′

and Λ′ and apply ReverseCycle with size c to C; since there exist c cycles
of 〈v1, v2, . . . , vl, v1(≡ vl+1)〉 on G′ under Λ′, we can reverse the direction of
the edges along the c cycles. Note that the outdegree (or the indegree) of each
node in the resulting directed graph is equal to the one under Λ′; it is still an
optimal orientation in G′ and can be updated as Λ′. For this new Λ′, we apply
the equation (2), then go back to the beginning of this paragraph. Since at least
one edge on the cycle C satisfies fvi→vi+1 = 0 by the ReverseCycle, the new
FΛ′ is strictly smaller than the old FΛ′ ; this step ends in at most m−2 iterations.

After the several (or possibly no) iterations of the above procedure, GΛ′ be-
comes a forest, and set F := GΛ′ . Note that all the edges of F are not decided yet
by (2). The cycle cancellation itself implies that there always exists an optimal
solution Λ′ for the relaxed problem such that Λ′ has no cycles in F . Then, we



Approximation Algorithms for the Graph Orientation Minimizing 173

have the nice tree structure, for which we can apply Up-To-Roots operation
that decides the orientation of all the remaining edges.

Theorem 2. For S = {1, . . . , k}, Algorithm Cycle-Canceling approximates
S-MMO within a factor of (2 − 1

k ) and runs in O(W 3/2 log Δ∗ + m2) time.

Proof. We first consider the running time. Steps 1 and 2 require the same time
complexity as Majority, i.e., O(W 3/2 log Δ∗) time. Each iteration of Steps 3
takes O(m) time, and also each iteration of Steps 4 takes O(m) time by the
depth first search, and these steps can be iterated at most m − 2 times. Step 5
takes O(m) time. In total, the running time is O(W 3/2 log Δ∗ + m2).

Next, we analyze the approximation factor. Let u∗ be any critical node in G
with respect to Λ, i.e., a node with maximum weighted outdegree under Λ. We
now prove that d+

Λ(u∗) ≤ (2− 1
k ) ·OPT (G). First of all, note that OPT (G) ≥ k

by Proposition 1 and also that OPT (G) ≥ OPT (G′) = d+
Λ′(x∗) ≥ d+

Λ′(u∗),
where x∗ is any critical node with respect to Λ′. Let F∗ be the forest of rooted
trees produced by Up-To-Roots in Step 5. There are two possible cases to
consider after the iterations of Steps 3 and 4:

1. u∗ is a root in F∗: 1 In this case, we immediately have d+
Λ(u∗) ≤ d+

Λ′(u∗)
because zero or more of u∗’s outgoing edges in Λ′ are reversed to obtain Λ,
but none of its incoming edges in Λ′ is reversed in Step 5. Then, recall that
d+

Λ′(u∗) ≤ OPT (G) by the above.
2. u∗ is not a root in F∗: In this case, let p denote the parent of u∗ and C the

set of children of u∗ in F∗, respectively. Clearly, we have

d+
Λ(u∗) = d+

Λ′ (u∗) + fp→u∗ −
∑

v∈C
fu∗→v ≤ d+

Λ′(u∗) + fp→u∗ ,

which yields

d+
Λ(u∗)

OPT (G)
≤ d+

Λ′ (u∗) + fp→u∗

OPT (G)
≤ d+

Λ′(u∗)
d+

Λ′(u∗)
+

fp→u∗

k
≤ 1 +

k − 1
k

= 2 − 1
k

,

where the last inequality holds since fp→u∗ + fu∗→p ≤ k and fu∗→p ≥ 1.

In both cases, d+
Λ(u∗) is within the desired bound. The theorem follows. 
�

Note that the analysis of Theorem 2 is tight; we can construct a worst-case
example of Cycle-Canceling for {1, 3}-MMO (see the full-length version of
our paper).

Remark: According to Theorem 2, the approximation factor of Algorithm
Cycle-Canceling for k = 2 is 3/2. This is actually the best possible in poly-
nomial time for k = 2 (unless P=NP), as we shall see in Section 4.
1 This case also handles the possibility that u∗ is disconnected from all other vertices

in GΛ′ .
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3.3 Refined Cycle Canceling Algorithm

We now consider the special case of S-MMO in which S = {1, k} for k ≥ 3, and
show that it can be approximated more efficiently than by Theorem 2. The key
idea is to show that if all edge weights in G are either 1 or k, a slight modification
to Algorithm Cycle-Canceling allows us to compute a stronger lower bound
on an optimal solution which then yields an improved approximation factor.

As mentioned in the previous section, the cycle cancellation itself provides an
optimal solution for the relaxed problem with a tree property. Here, we focus on
Step 5 of the algorithm Cycle-Canceling, in which the naive application of
Up-To-Roots with arbitrary roots gives a worst-case example; this causes the
approximation ratio to be 2 − 1/k. Its reason is that some nodes having large
outdegree under the orientation Λ′ are not suitable for being root; if such a node
is set to be a root, its outdegree will distribute to its neighbors, so that the
neighbors have large outdegree under Λ compared to that under Λ′. To avoid
such a bad situation, we introduce a simple procedure.

In the algorithm, do the same operations as Cycle-Canceling until Step 4,
and obtain a forest F . If there exists a leaf node u in F such that fu→v ≥ fv→u

holds for its neighbor v, we fix the orientation of eu,v as (u, v) and remove eu,v

from F (i.e., Λ(eu,v) := (u, v) and F = (V, F ) with F := F \ {eu,v}). We repeat
this operation until no leaf node u satisfies fu→v ≥ fv→u where v is the neighbor
node of u. Then we apply Up-To-Roots.

Algorithm Refined Cycle-Canceling

1-4. (Same as Cycle-Canceling).
4’. While there exists a leaf u connecting to v such that fu→v ≥ fv→u

in F = (V, F ), let Λ(eu,v) := (u, v) and remove eu,v from F .
5. For undecided edges of Λ, apply Up-To-Roots to F .
6. Return Λ.

Theorem 3. For any S = {1, k} where k ≥ 3, Algorithm Refined Cycle-
Canceling approximates S-MMO within a factor of (2 − 2

k+1 ) and runs in
O(W 3/2 log Δ∗ + m2) time.

Proof. It is easy to see that adding Step 4’ to Algorithm Cycle-Canceling
in Section 3.2 does not increase the asymptotic running time. Therefore, the
running time is O(W 3/2 log Δ∗ + m2).

To analyze the approximation factor of Refined Cycle-Canceling, we
proceed similarly as in the proof of Theorem 2. Let u∗ be any critical node in G
with respect to Λ, and let F∗ be the forest of rooted trees produced by Up-To-
Roots in Step 5. Recall that OPT (G) ≥ k and OPT (G) ≥ OPT (G′) ≥ d+

Λ′(u∗).
There are two main cases:

1. u∗ is a node which satisfies the condition in Step 4’: Then, since fp→u∗ ≤ k
2

for the parent p of u∗,

d+
Λ(u∗)

OPT (G)
≤ d+

Λ′(u∗) + fp→u∗

OPT (G)
≤ d+

Λ′ (u∗)
d+

Λ′ (u∗)
+

fp→u∗

k
≤ 1 +

k/2
k

=
3
2
.
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2. u∗ is a node which did not satisfy the condition in Step 4’:
(a) If u∗ is a root in F∗ then d+

Λ(u∗) ≤ d+
Λ′(u∗) ≤ OPT (G) and we are done

as before.
(b) If not, consider the tree T in F∗ that contains u∗. Let p be the parent

of u∗ in T and let 〈u1, u2, . . . , u�〉 be the path between any two leaves u1
and u� in the undirected version of T . Since u1 and u� satisfy fu1→u2 <
fu2→u1 and fu�→u�−1 < fu�−1→u�

, there must exist an intermediate
node ui such that fui−1→ui < fui→ui−1 and fui→ui+1 ≥ fui+1→ui . Next,
because all edges in T have weight k, we know that fv→w +fw→v = k for
every edge {v, w} in T , which means that fui→ui−1 > k/2 and fui→ui+1 ≥
k/2. Thus, the outdegree of ui is at least fui→ui−1 + fui→ui+1 > k, i.e.,
OPT (G′) ≥ k + 1. Plugging in this stronger lower bound gives us

d+
Λ(u∗)

OPT (G)
≤ d+

Λ′ (u∗) + fp→u∗

OPT (G)
≤ d+

Λ′(u∗)
d+

Λ′(u∗)
+

fp→u∗

k + 1
≤ 1+

k − 1
k + 1

= 2− 2
k + 1

.

Since 2− 2
k+1 ≥ 3/2 for k ≥ 3, the approximation is 2− 2

k+1 for k ≥ 3 in total.
Note that the approximation ratio of Refined Cycle-Canceling for k = 2 is
3/2 (same as Cycle-Canceling) because Step 5 is not executed. 
�

The analysis of Theorem 3 is also tight; we can construct a worst-case example
of Refined Cycle-Canceling for {1, 3}-MMO.

3.4 Polynomial Time Computation of 1-MMO of G′

In this subsection, we show the technique of making Algorithms Majority,
Cycle-Canceling and Refined Cycle-Canceling into polynomial time al-
gorithms. Recall that in these algorithms, we have to solve 1-MMO for G′, which
is generated from G by replacing each edge e with w(e) edges of weight 1,
as a sub-procedure. Hence, as described in Section 3.1, the algorithm requires
O(W 3/2 · log Δ∗) time only to obtain an optimal solution of 1-MMO. However,
the information that algorithms Majority, Cycle-Canceling and Refined
Cycle-Canceling need is not the orientation itself but the values fu→v and
fv→u, which can be computed in polynomial time.

The idea is as follows: Instead of explicitly constructing G′ and applying
Solve 1-MMO, we solve a relaxed version of the problem by using a maximum
network flow technique. The relaxed version means that for each edge, its ori-
entation may be fractional. For example, edge e = {u, v} with weight 2 may be
oriented as (u, v) with weight 1.5 and (v, u) with weight 0.5. Although the relaxed
optimal solution can contain fractional flows in some edges, the integral maxi-
mum flow problem is known to have an optimal solution of integral flows (flow
integrality) and some standard algorithms find such solutions indeed (for exam-
ple, [7] presents O(m min{m1/2, n2/3} log(n2/m) log U)-time algorithm, where U
is the maximum capacity size). Thus, the solution can be regarded as an opti-
mal solution of 1-MMO for G′. Although we omit the detail, the problem can be
solved by computing O(log Δ∗) times the maximum flow for a network of m+ n
vertices and 3m arcs with the maximum capacity k, which leads the following.
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Theorem 4. We can compute the fu→v and fv→u values of all the edges for
1-MMO of G′ in O(m3/2 · log m · log k · log Δ∗) time. 
�

Corollary 1. (a) The running time of Algorithm Majority can be improved
to O(m3/2 · log m · log k · log Δ∗) time, and also (b) the running time of Algo-
rithms Cycle-Canceling and Refined Cycle-Canceling can be improved
to O(m3/2 · log m · log k · log Δ∗ + m2) time. 
�

4 Inapproximability Results

It is shown that S-MMO is weakly NP-hard [1], but no result about the inapprox-
imability is shown. In this section, we provide a proof of the strong NP-hardness
of S-MMO, which also gives inapproximability results. More precisely, we give
a reduction from a variation of 3-SAT problem, At-most-3-SAT(2L), to {1, k}-
MMO. At-most-3-SAT(2L) is a restriction of 3-SAT where each clause includes
at most three literals and each literal (not variable) appears at most twice in a
formula. It can be easily proved that At-most-3-SAT(2L) is NP-hard by using
problem [LO1] on p. 259 of [6].

Given a formula φ of At-most-3-SAT(2L) with n variables {v1, . . . , vn} and m
clauses {c1, . . . , cm}, we construct a graph Gφ including gadgets that mimic (a)
literals, (b) clauses and (c) a special gadget. (a) Each literal gadget consists of
two nodes labeled by vi and vi and one edge {vi, vi} between them, corresponding
to variable vi of φ. The weight of {vi, vi} is k. (b) Each clause gadget is one node
labeled by cj, corresponding to clause cj of φ. The clause gadget cj is connected
to at most three nodes in the literal gadgets that have the same labels as the
literals in the clause cj, by edges of weight 1. For example, if c1 = x ∨ y is
appeared in φ, then node c1 is connected to nodes x and y. (See Figure 1.) (c)
The special gadget is a cycle of k nodes and k edges where each edge of the cycle

c1 = x ∨ ȳ

x zȳy z̄x̄

special gadget

clause
gadget

literal
gadget

c2 = x̄ ∨ y ∨ zk + 1 edges

Fig. 1. Reduction from At-Most-3-SAT
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has weight k.2 If a clause consists of one (two or three, resp.,) variable(s), then
it is connected to k (arbitrary k − 1 or k − 2, resp.,) nodes in the special gadget
by edges of weight 1. Hence, the degree of every clause node is exactly k + 1.

We can prove the following:

Lemma 1. For the above construction of Gφ, the followings hold: (i) If φ is
satisfiable, OPT (Gφ) ≤ k. (ii) If φ is not satisfiable, OPT (Gφ) ≥ k + 1. 
�
From Lemma 1, we immediately obtain the following theorem.

Theorem 5. {1, k}-MMO is strongly NP-hard. Consequently, Z
+-MMO is also

strongly NP-hard. 
�
Also the (in)satisfiability gap of Lemma 1 yields the following theorem.

Theorem 6. {1, k}-MMO (resp., Z
+-MMO) has no pseudo-polynomial time

algorithm whose approximation ratio is smaller than 1+1/k (resp., 3/2), unless
P=NP. 
�
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Abstract. In this paper, we consider the evacuation problem for a net-
work which consists of a directed graph with capacities and transit times
on its arcs. This problem can be solved by the algorithm of Hoppe and
Tardos [1] in polynomial time. However their running time is high-order
polynomial, and hence is not practical in general. Thus it is necessary to
devise a faster algorithm for a tractable and practically useful subclass of
this problem. In this paper, we consider a dynamic network with a single
sink s such that (i) for each vertex v the sum of transit times of arcs
on any path from v to s takes the same value, and (ii) for each vertex v
the minimum v-s cut is determined by the arcs incident to s whose tails
are reachable from v. We propose an efficient algorithm for this network
problem. This class of networks is a generalization of the grid network
studied in the paper [2].

1 Introduction

The problem for finding the most effective plan to evacuate people to safe place
has been modelled as an evacuation problem by using dynamic network flow. In
the evacuation problem, we are given a directed graph D = (V, A) which consists
of a vertex set V of n vertices with supply b(v) on every vertex v and an arc set
A of m arcs with capacity c(e) and transit time τ(e) on every arc e and a single
sink s ∈ V . If we consider urban evacuation, vertices model buildings, rooms,
exits and so on, and arcs model pathways or roads. For an arc e, capacity c(e)
represents the number of people which can traverse e per unit time, and transit
time τ(e) represents the time required to traverse e. For any vertex v, supply
b(v) represents the number of people which exist at v. The evacuation problem
asks to find the minimum time required to send all the supplies to a sink.

Given time horizon T , the decision problem of whether we can send all sup-
plies to a sink within time horizon T can be transformed to the maximum-flow
problem defined on the time-expanded network introduced by Ford and Fulker-
son [3]. However the time-expanded network consists of O(T ) copies of original
vertices and arcs and hence does not lead to the efficient algorithm.

The first polynomial time algorithm for the evacuation problem was proposed
by Hoppe and Tardos [1]. However it requires to use the submodular function

M.-Y. Kao and X.-Y. Li (Eds.): AAIM 2007, LNCS 4508, pp. 178–190, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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minimization as a subroutine. Hence the running time is high-order polynomial,
and the algorithm is not practical in general. Therefore it is necessary to devise
a faster algorithm for a tractable and practically useful subclass of this problem.

As a special case, Mamada et al. [4] gave O(n log2 n) time algorithm for the
tree network. Hall et al. [5] studied the case called uniform path-lengths where
there exists a single sink s and for any vertex v the sum of transit times of
arcs on any path from v to s takes the same value. They showed that in this
case the time-expanded network can be condensed to the so-called condensed
time-expanded network whose size is polynomial in the input size. Kamiyama
et al. [2] have shown an O(n log n) time algorithm for a

√
n ×

√
n grid network

with uniform arc capacity. In this paper, we will generalize the class of networks
for which the ideas developed in [2] can be applied, i.e., we consider a dynamic
network with a single sink s such that (i) for each vertex v the sum of transit
times of arcs on any path from v to s takes the same value, and (ii) for each
vertex v the minimum v-s cut is determined by the arcs incident to s whose
tails are reachable from v. The algorithm of [2] reduced the evacuation problem
to the min-max resource allocation problem [6], but in this paper we reduce the
evacuation problem to the parametric flow problem defined on a static network1.
Although it is known [5] that the evacuation problem in the case of uniform path-
lengths can be reduced to the parametric flow problem in which the capacity of a
subset of arcs is a linear function of time horizon T , we prove that in our case the
evacuation problem can be reduced to the special case of the parametric flow
problem studied by [7] which can be solved more efficiently than the general
parametric flow problem considered in [5]. Thus in the case where the input
dynamic network satisfies (i) and (ii), our algorithm is faster than using the
condensed time-expanded network. In particular, our algorithm becomes much
faster when the in-degree of a sink is small or considered to be a constant which
is often the case with road networks.

2 Preliminaries

Let R+ and Z+ denote the set of nonnegative reals and nonnegative integers,
respectively. We will not distinguish between a singleton {x} and its element x.
For any finite set X , we define |X | as the number of elements that belong to X .

Directed graph. We denote by D = (V, A) a directed graph which consists of
a vertex set V and an arc set A. A vertex u is said to be reachable to a vertex v
when there is a path from u to v. We denote by e = uv an arc e whose tail is u
and head is v. For any X, Y ⊆ V , we define δ(X, Y ) = {e = xy : x ∈ X, y ∈ Y },
and we write δ+(X) and δ−(X) instead of δ(X, V − X) and δ(V − X, X), re-
spectively. For any u, v ∈ V , we denote by λD(u, v) the local arc connectivity
from u to v in D. For any W ⊆ V , let D[W ] denote the directed subgraph of D
induced by W . Throughout this paper, we assume that D is acyclic.
1 In order to distinguish classical network from dynamic network, we call classical

network static network.
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Dynamic network. We denote by N = (D = (V, A), c, τ, b, s) a dynamic net-
work N which consists of the directed graph D = (V, A), a capacity function
c : A → R+ which represents the upper bound for the rate of flow that enters
an arc per unit time, a transit time function τ : A → Z+ which represents the
time required to traverse an arc, a supply function b : V → R+ which represents
the supply of a vertex, and a single sink s ∈ V . In order to avoid complicated
argument, we assume τ(e) > 0 for any e ∈ A. In this paper, we use the follow-
ing notations : (i) c(W1, W2) =

∑
e∈δ(W1,W2) c(e) for any W1, W2 ⊆ V , and (ii)

c(W ) = c(W, V −W ) and b(W ) =
∑

v∈W b(v) for any W ⊆ V . Since we consider
evacuation to s, we assume that s has no leaving arcs and no supply, and any
vertex is reachable to s. We define a length of a path p in D as

∑
e∈p τ(e). We

define a dynamic network flow f : A × Z+ → R+ in N as follows. For any e ∈ A
and θ ∈ Z+, we denote by f(e, θ) the flow rate entering e at the time step θ
which arrives at the head of e at the time step θ + τ(e). We call f a feasible
dynamic network flow in N if it satisfies the following three conditions, i.e., ca-
pacity constraint CC, flow conservation FC, and demand constraint DC [4].
CC : For any e ∈ A and θ ∈ Z+, 0 ≤ f(e, θ) ≤ c(e).
FC : For any v ∈ V and Θ ∈ Z+,

∑
e∈δ+(v)

∑Θ
θ=0 f(e, θ) −

∑
e∈δ−(v)

∑Θ−τ(e)
θ=0 f(e, θ) ≤ b(v).

DC : There exists Θ ∈ Z+ such that

∑
e∈δ−(s)

∑Θ−τ(e)
θ=0 f(e, θ) =

∑
v∈V b(v). (1)

For a feasible dynamic network flow f , let Θ(f) denote the minimum time step
Θ satisfying (1). The evacuation problem asks to find the minimum value of Θ(f)
among all feasible dynamic network flows f . Given a dynamic network N , the
evacuation problem EP(N ) is formally defined as follows:

EP(N ) : minimize {Θ(f) : f is a feasible dynamic network flow in N} .

We define Θ(N ) as the optimal value of EP(N ). Given time horizon T , we define
the decision version of EP(N ) with time horizon T as the problem which deter-
mines whether there exists a feasible dynamic network flow f with Θ(f) ≤ T in
N . Throughout this paper, n and m denote |V | and |A|, respectively.

Static network. We denote by N ′ = (D′ = (V ′, A′), c′, b′, s′) a static net-
work N ′ which consists of the directed graph D′ = (V ′, A′), a capacity function
c′ : A′ → R+ a supply function b′ : V ′ → R+, and a single sink s′ ∈ V ′. We call
f : A′ → R+ a feasible static network flow in N ′ if it satisfies the following two
conditions, i.e., capacity constraint CC and flow conservation FC.

CC : For any e ∈ A′, 0 ≤ f(e) ≤ c′(e).
FC : For any v ∈ V ′ − s′,

∑
e∈δ+(v) f(e) −

∑
e∈δ−(v) f(e) = b′(v).

If there exists a feasible flow in N ′, N ′ is called feasible
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Time-expanded network. To solve the decision version of EP(N ) with time
horizon T , Ford and Fulkerson [3] introduced the time-expanded network which
is a static network such that for any v ∈ V and i = 0, 1, . . . , T , there is a vertex
vi, and for any e = uv ∈ A, i = 0, 1, . . . , T − τ(e), there is an arc ei = uivi+τ(e)
whose capacity is c(e), and for any v ∈ V and i = 0, 1, . . . , T − 1, there is a
holdover arc vivi+1 with infinite capacity. For any v ∈ V the supply of v0 is
set to b(v) and the supplies of all the other vertices vi for i = 1, . . . , T are set
to zero. Let sT be a sink in the time-expanded network (Fig. 1). Though we
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Fig. 1. (a) Dynamic network N . (The pair of numbers attached to the arc indicates the
capacity and the transit time.) (b) Time-expanded network with T = 7. (The number
attached to the arc indicates the capacity.)

can decide whether the time-expanded network is feasible or not by solving the
maximum-flow problem, the running time is pseudo-polynomial because the size
of the time-expanded network is pseudo-polynomial in the input size.

2.1 Dynamic Networks with Uniform Path-Lengths

From here, we assume that any dynamic network satisfies uniform path-length
condition. First we review the result due to Hall et al. [5]. They proved that
EP(N ) can be reduced to the parametric flow problem defined on the condensed
time-expanded network whose size is polynomial in the input size.

We introduce necessary notations for N = (D = (V, A), c, τ, b, s). For v ∈ V ,
we define lv as the length of a path from v to s. Let us arrange the distinct
values in {lv : v ∈ V } as L1 < · · · < Lk where L1 = 0 and k is the number of
the distinct path-lengths in N . Without loss of generality we assume that for
any i with 2 ≤ i ≤ k b(v) > 0 for at least one vertex v ∈ V with lv = Li.
Let Lk+1 = T + 1. We say a vertex v is at level i when lv = Li, which is
denoted by lev(v) = i. We partition interval [0, T ] into I1, I2, . . . , Ik such that
Ii = [Li, Li+1−1] holds for i = 1, . . . , k. Moreover, let Ps = {v ∈ V : e = vs ∈ A}
and Rv = {w ∈ Ps : w is reachable from v in D} for v ∈ V . For example, for N
in Fig. 1(a) with T = 7, we obtain (ls, lw, lu, lv) = (0, 1, 3, 6). Thus, we have
k = 4 and I1 = {0}, I2 = {1, 2}, I3 = {3, 4, 5}, I4 = {6, 7}.

The condensed time-expanded network N c = (Dc = (V c, Ac), cc, bc, sc) for
N with time horizon T is defined as follows. V c is defined as {vi : v ∈ V, i =
lev(v), . . . , k}. Ac consists of two types, i.e., Ac = Ac

1 ∪Ac
2. Ac

1 = {ei = uivi : e =
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uv ∈ A, i = lev(u), . . . , k} and Ac
2 = {vivi+1 : v ∈ V, i = lev(v), . . . , k − 1}. Arc

ei ∈ Ac
1 has the capacity |Ii|c(e) where |Ii| denotes the number of elements in

Ii. An arc in Ac
2 is a holdover arc whose capacity is infinity. For v ∈ V the

supply of vlev(v) is set to b(v) and the supplies of all the other vertices vi for
i = lev(v) + 1, . . . , k are set to zero. sc = sk holds (Fig. 2(a)).
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(b)

Fig. 2. (a) N c for N in Fig. 1(a) with T = 7. (b) V (i) for N c. (The number attached
to the arc indicates the capacity, and holdover arcs are illustrated by dotted lines.)

For i = 1, . . . , k, let V (i) = {vi ∈ V c : v ∈ V } and A(i) = {ei ∈ Ac
1 : e ∈ A}.

Notice that V (i) for i = 1, . . . , k partitions V c. It is easy to see that A(i) is the
arc set of Dc[V (i)], i.e., the subgraph of Dc induced by V (i) (Fig. 2(b)). From
the definition of N c, we have the following fact.

Fact 1. For any i, j = 1, . . . , k with j − i �= 1, there is no arc connecting from
V (i) to V (j). For any i = 1, . . . , k − 1, δ(V (i), V (i + 1)) = {vivi+1 : vi ∈ V (i)}
holds.

From Fact 1, we can see that (i) N c consists of k components such that for any
i = 1, . . . , k, the i-th component is a directed graph Dc[V (i)] such that capacity
of ei ∈ A(i) is |Ii|c(e) (Fig. 2(b)), and (ii) consecutive components are connected
by holdover arcs. Let V≤i = {v ∈ V : lev(v) ≤ i} for i = 1, . . . , k.

Lemma 1. (i) For any i = 1, . . . , k, Dc[V (i)] is isomorphic to D[V≤i]. (ii) For
any i = 1, . . . , k and u, v ∈ V≤i, λDc[V (i)](ui, vi) = λD(u, v).

Proof. (i) follows from the definition of Dc[V (i)]. (ii) follows from λD[V≤i](u, v) =
λD(u, v) for i = 1, . . . , k and u, v ∈ V≤i and from (i). 	


Hall et al. showed that a feasible dynamic flow f with Θ(f) ≤ T exists in N
if and only if N c is feasible for time horizon T . Thus EP(N ) can be solved by
computing the minimum T such that N c is feasible. By regarding T as the para-
meter we can reduce EP(N ) to the parametric flow problem defined as follows.

Parametric flow problem. Given a static network N ′=(D′=(V ′, A′), c′, b′, s′)
such that the capacity of e ∈ A′ is represented by ae + geξ where ae is a real
constant, ge is a nonnegative constant, and ξ is a nonnegative parameter, the
parametric flow problem asks to find the minimum value of ξ such that N ′ is
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feasible. This problem can be solved in O(|A′|2|V ′| log(|V ′|2/|A′|)) time by using
the algorithm of [8].

Notice that from Lk+1 = T + 1 cc(ek) = |Ik|c(e) = (T − Lk + 1)c(e). The
following theorem follows from |V c| = O(kn) and |Ac| = O(km).

Lemma 2 ([5]). EP(N ) can be solved in O(k3m2n log(kn2/m)) time.

3 Evacuation Problem for a Fully Connected Network

A dynamic network N = (D = (V, A), c, τ, b, s) is called fully connected if for
each vertex v ∈ V − s the minimum v-s cut is determined by the arcs incident
to s whose tails are reachable from v. That is, the value of the minimum v-s cut
is equal to

∑
e∈δ(Rv ,s) c(e). In the subsequent discussion, we concentrate on the

unit capacity case, i.e., the capacity of every arc is equal to one. In this case, N
is fully connected if and only if λD(v, s) = |δ(Rv, s)| holds for any v ∈ V − s.
The general capacity case can be treated similarly, which we will consider at the
end of this section. In this section, we prove that EP(N ) for a fully connected
network can be solved efficiently. This is a generalization of the result of [2]. We
will prove that the problem can be reduced to to the restricted parametric flow
problem defined in Section 3.2.

For the subsequent discussion, we will define contraction in a static network
N ′ = (D′ = (V ′, A′), c′, b′, s′) and show the sufficient condition such that we can
contract some vertex set in N c. The contraction of X ⊆ V ′ − s′ in N ′ is defined
as the operation which consists of shrinking the vertices in X into a single vertex,
eliminating loops, and combining multiple arcs by adding their capacities. For
X ⊆ V ′ − s′, we call X contractible when N ′

/X is feasible if and only if N ′ is
feasible. We then give the sufficient condition such that X is contractible in N ′

(the proof is omitted).

Lemma 3. For X ⊆ V ′ − s′, if there exists Y ⊆ V ′ − s′ with X ⊆ Y such that
c′(Z) ≥ c′(Y ∪ Z) holds for any Z ⊆ V ′ − s′ with X ∩ Z �= ∅ and X � Z, X is
contractible.

3.1 Contraction in the Condensed Time-Expanded Network

For N = (D = (V, A), c, τ, b, s) and Q ⊆ Ps, let PQ = {v ∈ V : Rv ⊆ Q} and
P∗

Q = {v ∈ V : Rv = Q, λD(v, s) = |δ(Q, s)|} (Fig. 3(a)). If N is fully connected,
V − s =

⋃
Q⊆Ps

P∗
Q holds. For any W ⊆ V and i = 1, . . . , k, let W (i) = {vi ∈

V c : v ∈ W}. The following theorem will be used in the subsequent discussion.

Theorem 1. For any Q ⊆ Ps and i = 1, 2, . . . , k, P∗
Q(i) is contractible in N c.

The following lemma will be used in the proof of Theorem 1 (the proof is omitted).

Lemma 4. δ+(
⋃

i≤j≤k PQ(j)) =
⋃

i≤j≤k δ(Q(j), sj) holds.
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Fig. 3. (a) PQ and P∗
Q with Q = {u, v}. (b) PQ(i) and P∗

Q(i) with Q = {u, v} and
i = 4, 5. (The transit time in Fig 3(a) takes the same value.)

Proof. (Theorem 1) Let us fix Q ⊆ Ps and i. We will use Lemma 3 to prove
that P∗

Q(i) is contractible by setting X = P∗
Q(i) and Y =

⋃
i≤j≤k PQ(j). Thus,

it is sufficient to prove cc(Z) ≥ cc(Y ∪ Z) for any Z ⊆ V c − sc with X ∩ Z �= ∅
and X � Z. In order to prove cc(Z) ≥ cc(Y ∪ Z), it is sufficient to prove
cc(Y ) ≤ cc(Y ∩ Z) since cc is a submodular function. Recalling that every arc
capacity is assumed to be one, cc(ej) = |Ij | holds. Thus from Lemma 4, we have

cc(Y ) =
∑k

j=i |δ(Q(j), sj)||Ij |. (2)

Now we evaluate cc(Y ∩Z). From X ∩Z �= ∅, let v∗i ∈ X ∩Z. Since the capacity
of holdover arc is infinity, we can assume v∗j ∈ Z holds for any j = i + 1, . . . , k
since otherwise cc(Y ∩ Z) = +∞ and the theorem clearly holds. We have

cc(Y ∩ Z) ≥
∑k

j=i

∑
e∈δ(PQ(j)∩Z,V (j)−(PQ(j)∩Z))c

c(e) (3)

(the details are omitted). Since δ(PQ(j) ∩ Z, V (j) − (PQ(j) ∩ Z)) is the set of
arcs outgoing from PQ(j) ∩ Z in the j-th component, the following inequality
holds for every j with j = i, i + 1, . . . , k

∑
e∈δ(PQ(j)∩Z,V (j)−(PQ(j)∩Z)) cc(e) ≥ λDc[V (j)](v∗j , sj)|Ij | (from v∗j ∈ PQ(j) ∩ Z)

= λD(v∗, s)|Ij | (from Lemma 1(ii))= |δ(Q, s)||Ij | (from v∗ ∈ P∗
Q). (4)

Since |δ(Q(j), sj)| ≤ |δ(Q, s)| holds, we have from (2), (3) and (4)

cc(Y ) =
∑k

j=i |δ(Q(j), sj)||Ij | ≤
∑k

j=i |δ(Q, s)||Ij | ≤ cc(Y ∩ Z). 	


3.2 The Restricted Parametric Flow Problem

In this problem, we are given a static network with multiple sinks N ′′ = (D′′ =
(V ′′, A′′), c′′, b′′, S′′) such that (i) S′′ is a set of sinks, (ii) the capacity c′′(e) for an
arc e incident to a sink is a linear function ae +geξ where ae is a constant, ge is a
nonnegative constant and ξ is a nonnegative parameter. The problem asks to find
the minimum value of ξ such that N ′′ is feasible where we define f : A′′ → R+
a feasible flow in N ′′ when it satisfies CC and FC for any v ∈ V ′′ − S′′. This
problem can be transformed into a parametric maximum-flow problem studied
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by [7] by introducing a super source vertex q and arcs from q to every vertex v
with b′′(v) > 0 such that the capacity of qv is set to b′′(v). It is then easy to see
that N ′′ is feasible for a fixed ξ if and only if the maximum-flow value from q
to S′′ in the transformed problem is

∑
v∈V ′′ b′′(v). Regarding ξ as a parameter,

the maximum-flow value is a linear function in ξ.

Lemma 5 ([7]). The maximum-flow value from q to S′′ in the transformed net-
work is a non-decreasing piecewise linear concave function κ(ξ), and the largest
breakpoint of κ(ξ) can be found in the same time complexity as that of a single
computation of the maximum-flow, i.e., O(|A′′||V ′′| log(|V ′′|2/|A′′|)).

Lemma 6. We can determine whether there exists ξ such that N ′′ is feasible,
and if there exists such ξ, the minimum such value can be found in O(|A′′||V ′′|
log(|V ′′|2/|A′′|)).

Proof. From the above discussion, N ′′ is feasible when there exists ξ such that
maximum-flow value in the transformed problem is equal to

∑
v∈V ′′ b′′(v). On the

other hand, the maximum-flow value in the transformed problem can not exceed∑
v∈V ′′ b′′(v). Thus when ξ is larger than the largest breakpoint the slope of κ(ξ)

is zero and κ(ξ) is less than or equal to
∑

v∈V ′′ b′′(v). Checking whether there
exists ξ such that N ′′ is feasible reduces to computing the largest breakpoint of
κ(ξ). Moreover, if there exists ξ such that N ′′ is feasible, the minimum value of
ξ such that N ′′ is feasible is equal to the largest breakpoint of κ(ξ). Thus, the
lemma follows from Lemma 5. 	


As was defined in Section 2.1, in the condensed time-expanded network, the
capacity of all arcs in the k-th component Dc[V (k)] contains the parameter
T , i.e., linear function of T . In Fig. 2(a), regarding T as the parameter, we
have cc(u4s4) = 2(T − 5), cc(w4s4) = 7(T − 5), cc(v4u4) = 6(T − 5), and
cc(v4w4) = 4(T−5). Thus, the arcs which are not incident to a sink (i.e., v4u4 and
v4w4) have the parametric capacity. Therefore, we can not reduce EP(N ) for a
general dynamic network with uniform path-lengths to the restricted parametric
flow problem.

3.3 Reduction to the Restricted Parametric Flow Problem

Our reduction is constructed by the following lemmas. First, given a vertex set
V̂ , a supply function b̂ : V̂ → R+, a path-length function l̂ : V̂ → R+, and a sink
ŝ ∈ V̂ , let N (V̂ , b̂, l̂, ŝ) be a set of dynamic networks N̂ = (D̂ = (V̂ , Â), ĉ, τ̂ , b̂, ŝ)

sê

x

y

v

w
14

1

33 5

3

1
5 sê

x

y

v

w
14

1

33 5

3

1
5

sê

x

y

v

w
14

1

5

3

1
5

6
2 2

Fig. 4. Example of dynamic networks in N (V̂ , b̂, l̂, ŝ). (The numbers attached to the
arc and the vertex indicate the capacity and the supply, respectively.)
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which satisfies (i) |δ−(ŝ)| = 1, (ii) for any v ∈ V̂ the length from v to ŝ is
equal to l̂v, and (iii) ĉ(e) = 1 for any e ∈ Â. Since we are only given path-length
function but not the arc set or transit time of arcs, there may exist many possible
networks which satisfy the given path-length function. For example, given V̂ =
{ŝ, x, y, v, w}, (b̂(ŝ), b̂(x), b̂(y), b̂(v), b̂(w)) = (0, 4, 3, 5, 1), and (l̂ŝ, l̂x, l̂y, l̂v, l̂w) =
(0, 1, 2, 4, 7), all dynamic networks in Fig. 4 belong to N (V̂ , b̂, l̂, ŝ).

Lemma 7. For any N̂ ∈ N (V̂ , b̂, l̂, ŝ), Θ(N̂ ) takes the same value regardless of
the underlying network topology of N̂ .

Proof. For any N̂ = (D̂ = (V̂ , Â), ĉ, τ̂ , b̂, ŝ) ∈ N (V̂ , b̂, l̂, ŝ), Pŝ consists of a single
element from |δ−(ŝ)| = 1. Thus, N̂ is fully connected because any v ∈ V̂ is
reachable to ŝ by using the path of length l̂v. Since l̂v does not depend on the
choice of N̂ , the number of distinct values in {l̂v : v ∈ V̂ } does not depend on the
choice of N̂ . Let k̂ denote this number. Let N̂ c be the condensed time-expanded
network for N̂ . Since N̂ is fully connected, V̂ (i)− ŝi is contractible in N̂ c for any
i = 1, . . . , k̂ from Theorem 1. Let N̂ ∗ = (D̂∗ = (V̂ ∗, Â∗), ĉ∗, b̂∗, ŝ∗) be the one
obtained by contracting V̂ (i) − ŝi into a single vertex pi for every i = 1, . . . , k̂
in N̂ c. It is easy to see that arcs whose capacity is not infinity in N̂ ∗ are piŝi

with i = 1, . . . , k̂ and the capacity of piŝi is equal to |Îi| since the capacity of
any arc is assumed to be one where Îi is defined for N̂ in a manner similar to
Ii for N . It is easy to see that |Îi| does not depend on the choice of N̂ from the
definition of Îi. Since V̂ (i) does not depend the choice of N̂ , the supply of pi

does not depend on the choice of N̂ . From the above discussion, regardless of
the choice of N̂ ∈ N (V̂ , b̂, l̂, ŝ), N̂ ∗ is the same. This completes the proof. 	


4 3 5 1
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111p2 p3 p4 p5

sê1 sê2 sê3 sê4 sê5

Tà 6

Fig. 5. N̂ ∗ for dynamic network in Fig. 4. (The numbers attached to the vertex and
the arc indicate the supply and the capacity, respectively.)

Form the proof of Lemma 7, we can see that for any N̂ ∈ N (V̂ , b̂, l̂, ŝ) Θ(N̂ )
depends only on the sum of the supplies of vertices v ∈ V̂ such that lev(v) takes
the same value, but not the supply of each vertex.

For N = (D = (V, A), c, τ, b, s), let δ(Ps, s) = {e1, e2, . . . , ed}, and V j = {v ∈
V : v is reachable to the tail of ej} ∪ {s}.
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e1
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s
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Fig. 6. (a) D = (V, A), (b) D1 = (V 1, A1), (c) D2 = (V 2, A2).



An Efficient Algorithm for the Evacuation Problem 187

Lemma 8 ([9]). Given a dynamic network N = (D = (V, A), c, τ, b, s), there
exist d arc-disjoint s-rooted trees Dj = (V j , Aj) for j = 1, . . . , d such that Dj

spans V j and Aj ⊆ A if and only if λD(v, s) = |δ(Rv, s)| holds for any v �= s.

Fig. 6(b) and (c) illustrate D1 and D2 of the directed graph D in Fig. 6(a).
Now let us fix {bj : j = 1, . . . , d} such that (i) For any v ∈ V ,

∑d
j=1 bj(v) =

b(v) holds, and (ii) for any v ∈ V and j = 1, . . . , d with v /∈ V j , bj(v) = 0
holds. Intuitively speaking, bj(v) represents the assignment of the supply of v
which reaches s through Dj = (V j , Aj). For a fully connected network N =
(D = (V, A), c, τ, b, s), let N j = (Dj = (V j , Aj), cj , τ j , bj, s) where cj and τ j

respectively denote c and τ whose domain is restricted to Aj . Notice that from
Lemma 7 Θ(N j) does not depend on the choice of Aj if bj is fixed. Let f j

opt be
an optimal dynamic network flow in N j . Recalling that since Aj1 ∩Aj2 = ∅ holds
with j1 �= j2, the dynamic flow obtained by combining f j

opt for all j = 1, . . . , d
is feasible in N .

Lemma 9. Given a fully connected network N = (D = (V, A), c, τ, b, s), under
the constraint such that for each v ∈ V the amount of b(v) which reaches s
through ej is bj(v), Θ(N ) is equal to max{Θ(N j) : j = 1, . . . , d}.

The proof of this lemma is almost the same as Theorem 3 in [2], and hence is
omitted. From Lemma 9, we only need to determine bj for j = 1, . . . , d to obtain
Θ(N ).

Lemma 10. We can reduce EP(N ) for a fully connected network N to the
restricted parametric flow problem.

We will prove the lemma as follows.
For a fully connected network N = (D = (V, A), c, τ, b, s), let R(N ) = (DR =

(VR, AR), cR, bR, SR) be the static network with multiple sinks to which EP(N )
is reduced. First we consider R(N ) in the case of |δ−(s)| = 1. In this case, R(N )
is the same as N̂ ∗ defined in the proof of Lemma 7. Notice that the parameter
T is contained only in the capacity of the arc which is incident to a sink ŝk̂ by
the definition of Îi (e.g. see Fig. 5). It is clear that in order to compute Θ(N )
we need to compute T ∗ which is the minimum value of T such that R(N ) is
feasible, i.e., the solution of the restricted parametric flow problem defined on
R(N ). Notice that Θ(N ) = �T ∗� holds.

From the above discussion, we can construct R(N ) for the case of |δ−(s)| > 1
in three steps as follows. R(N ) is constructed so that the minimum value of
max{Θ(N j) : j = 1, . . . , d} among all bj with j = 1, . . . , d is equal to �T ∗� where
T ∗ is the same as defined above and we can compute an optimal allocation of
the supplies bj with j = 1, . . . , d which attains T ∗, i.e. Θ(N ). Let V (i, Q) = {v ∈
V : lev(v) = i, Rv = Q}.

(i) We first construct gadget Gj separately for each j = 1, . . . , d which is
the same as R(N j) with no supply (Fig. 7(a), (b), and (c)). Notice that the
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parameter T is common in all gadgets. (ii) For every nonempty V (i, Q), we add
vertices uQ

i in VR. The supply of uQ
i (denoted by bR(uQ

i )) is defined as the sum
of supplies in V (i, Q). (iii) We add the arc from uQ

i to the gadget Gj in AR if
V j ∩ V (i, Q) �= ∅. Notice that the allocation of the supply of uQ

i to the gadget
Gj means that we allocate the supplies of V (i, Q) to N j . We determine to which
vertex in Gj uQ

i is connected as follows. For any j = 1, . . . , d, we arrange the
distinct values {lv : v ∈ V j} as Lj

1 < · · · < Lj
kj . We connect uQ

i to pi′ in Gj

with Lj
i′ = Li. Notice that from the way of construction of R(N ) the parameter

T is contained only in the capacity of the arc which is incident to skj in each
gadget Gj . Therefore, all arcs in AR whose capacity contains the parameter T
are incident to sinks SR. Lemma 10 then follows from the way of construction
of R(N ). For example, in step(ii) u

{x,y}
4 in Fig. 7(d) is added to allocate the

supply of v in Fig. 7(a). In step(iii), for N 1 and N 2 in Fig. 7(b), k1 = 5 and
k2 = 4 hold, and u

{x,y}
4 in Fig. 7(d) is connected to p4 in G1 and p3 in G2. In

Fig. 7(c) and (d), only p5s5 in G1 and p4s4 in G2 contain the parameter T .
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Fig. 7. (a) Dynamic network N . (b) N 1 and N 2 for N with no supply. (c) Gadgets
G1 and G2. (d) Vertices and arcs introduced to allocate supplies.

As was seen in Section 3.2, the restricted parametric flow problem defined on
R(N ) can be transformed into the parametric maximum-flow problem studied
by [7] by adding the super source vertex q as well as arcs from q to all uQ

i ’s
in VR such that the capacity of quQ

i is set to bR(uQ
i ). Since in this parametric

maximum-flow problem the capacities of all cuts except δ(q, VR) diverge to ∞
from the way of construction of R(N ) as T goes to ∞, the maximum flow value
of the parametric maximum-flow problem is bounded by

∑
v∈VR

bR(v), i.e., there
always exists T such that R(N ) is feasible. Since we assume b(v) > 0 for at least
one vertex v with lev(v) = k, Θ(N ) ≥ Lk holds. Therefore, we need to consider
only the case of T ≥ Lk in the parametric maximum-flow problem.
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3.4 Time Complexity

Let η be the number of distinct combinations of the path-length from v to s and
Rv, i.e., η = |{(lv, Rv) : v ∈ V }|. Notice that η is equal to the number of uQ

i

defined above and η = O(n) holds.

Theorem 2. The evacuation problem EP(N ) for a fully connected network N
can be solved in O(|Ps|m + n log n + d(dk + η)(k + η) log n) time.

Proof. The term O(|Ps|m+n logn) is the time required to construct R(N ) (the
details are omitted). The third term represents the time required to solve the
restricted parametric flow problem. Let us evaluate the size of R(N ). A single
gadget has O(k) vertices and O(k) arcs. Since there exist d gadgets, the union of
all gadgets has O(dk) vertices and O(dk) arcs. The number of vertices which is
added to allocate the supplies is equal to η. The number of the arcs added to these
vertices is clearly O(dη). From the above discussion, we have |VR| = O(dk + η)
and |AR| = O(dk + dη). From Lemma 6, this completes the proof. 	

Let us analyze the running time given in the above theorem in terms of m and
n. Notice that the number of the arcs added to allocate the supplies is bounded
by O(m). This is because this number is at most

∑
v∈V −s |δ(Rv, s)| since uRv

i is
connected to at most |δ(Rv, s)| gadgets for v ∈ V − s with lev(v) = i. Moreover,
we have

∑
v∈V −s |δ(Rv, s)| ≤

∑
v∈V −s |δ+(v)| = m since the out-degree of v is

no less than |δ(Rv, s)| from the fact that N is fully connected and the capacity of
any arc is one. Next we prove that the union of all gadgets has O(m) vertices and
O(m) arcs. Since N j has |V j | vertices, the gadget Gj has O(|V j |) vertices and
O(|V j |) arcs from the way of construction of Gj . Thus the number of vertices
and arcs in the union of all gadgets are O(

∑d
j=1 |V j |), respectively. Since V j is

the union of a sink s and the set of vertices which are reachable to the tail of ej ,∑d
j=1 |V j | =

∑
v∈V −s |Rv| + d holds (the term d represents the number of the

copies of a sink). From
∑

v∈V −s |Rv| ≤
∑

v∈V −s |δ+(v)| = m and O(d) = m, the
number of vertices and arcs in the union of all gadgets are O(m), respectively.
Thus we have |VR| = O(m) and |AR| = (m) from η = O(n), and the following
corollary follows from Lemma 6.

Corollary 1. The evacuation problem EP(N ) for a fully connected network N
can be solved in O(m2 log n) time.

If we simply apply the algorithm of [5], the time complexity is O(k3m2n log
(kn2/m)). Our algorithm much improves the result of [5] in this case. In many
practical cases, the in-degree of a sink can be considered as a constant. In this
case, if we can regard d as a constant, the time complexity of our algorithm is
O(dm + d2n2 log n).

Integral capacity case. For this case, we can apply our algorithm by splitting
arcs into ones whose capacity is one. In this case, we have R(N ) which has O(kn)
vertices and O(n2) arcs by combining all gadgets corresponding to parallel arcs,
and hence our algorithm can solve EP(N ) in O(kn3 log n) time. In the general
capacity case, we can extend our algorithm similarly.
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4 Conclusion and Remarks

In this paper, we generalize the class of networks to which the algorithm of [2]
can be applied. Though the details are omitted, our algorithm can solve EP(N )
for a d-dimensional grid network with uniform capacity in O(d2n + n log n +
d332dn2/d log n) time. In particular, in the case of d = 2, EP(N ) can be solved
in O(n log n) time. This time complexity matches the result of [2]. In the case
where there exists a vertex v with λD(v, s) < |δ(Rv, s)| (called deficient vertex) in
a 2-dimensional grid network with uniform capacity, this problem can be solved
in O(σ3n3/2 log n) time by contracting the condensed time-expanded network
according to Theorem 1 where σ is the number of deficient vertices.
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Abstract. Orthogonal Variable Spreading Factor (OVSF) code assign-
ment is a fundamental problem in Wideband Code-Division Multiple-
Access (W-CDMA) systems, which play an important role in third
generation mobile communications. In the OVSF problem, codes must
be assigned to incoming code requests, with different data rate require-
ments, in such a way that they are mutually orthogonal with respect to
an OVSF code tree. An OVSF code tree is a complete binary tree in
which each node represents a code associated with the combined band-
widths of its two children. To be mutually orthogonal, each leaf-to-root
path must contain at most one assigned code. In this paper, we focus on
the online version of the OVSF code assignment problem, in the often-
studied context of the single cell as well as in the more general context of
the whole multi-cell cellular network (for which there are no known re-
sults). With the help of 1/8 and 11/8 extra bandwidth resources, we are
able to give a 5-competitive algorithm in the single cell and the multi-
cell context respectively, which means that the competitive ratio is a
constant and not a function of the height of the OVSF tree and thereby
improving upon past results.

1 Introduction

Wideband Code-Division Multiple-Access (W-CDMA) technology is one of the
main technologies widely-developed in recent years for the implementation of
third-generation (3G) cellular systems. We consider the well-studied problem of
Orthogonal Variable Spreading Factor (OVSF) code assignment in W-CDMA
systems [5,6,9,10,12].

OVSF is an implementation of CDMA wherein, before each signal is trans-
mitted, the spectrum is spread according to a unique code, which is derived from
an OVSF code tree. An OVSF code tree is a complete binary tree. Users have
requests for different data rates, and we accommodate these different requests by
assigning codes at different levels of the OVSF code tree, with the root being at
� This research was supported in part by Hong Kong RGC Grant HKU-7113/07E.
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the highest level and representing the entire bandwidth of the wireless system.
The code at any node other than the root denotes the bandwidth half that of
its parent in the tree. In any legal assignment in the code tree, no two assigned
codes lie on a single path from the root to a leaf, i.e., any two assigned codes are
mutually orthogonal. The subset of nodes in the code tree, which forms a legal
assignment, is called a code assignment (CA). A node x is said to be free if there
are no assigned nodes in every root-to-leaf path containing x, and thus making
x an assigned node would still result in a legal assignment. For convenience, we
use the words “code” and “node” interchangeably. Fig. 1 is an example of an
OVSF code tree with the code assignment represented by the darkened nodes
marked as c, d, e, g and i.

level 1

level 2

level 3

level 4

level 5

a

b

c

d

e f

g h

i

Fig. 1. An example of OVSF code tree, solid circles are the assigned codes

To illustrate the essence of the OVSF code assignment problem, consider the
configuration shown in Fig. 1. Let Req(x) denote the request to which code x
is assigned, and let reassign x to y denote the reassignment of Req(x) to code
y and the freeing of code x (i.e. making x a free code). Suppose a level-2 code
request arrives followed by a level-3 code request. If we assigned code b to the
first request, we would have to make two code reassignments before we can assign
code a to the second request, e.g. reassign b to h (and thereby freeing b) and
reassign c to f (freeing c and consequently a). If, on the other hand, h were
assigned to the first request, only one reassignment would be needed to satisfy
the second request, i.e. reassign c to f (freeing c and consequently a), and then
assign code a to the second request.

Since each reassignment requires processing overhead and may affect the qual-
ity of communications, a natural goal would be to minimize the number of re-
assignments. Note that this problem will not be too difficult and can be solved
optimally by a greedy strategy if codes were never released. However, when codes
can be released, the code tree can be fragmented so that many reassignments
might be needed if a good assignment algorithm were not used.

In general, the algorithm for OVSF code assignment is expected to handle a se-
quence σ = (C1, C2, . . . , Ck, . . .) of code operations over time, each operation Ck

being either to request a code at a particular level or to release an assigned code.
Note that, if the total bandwidth of any set of mutually orthogonal free codes is
less than the bandwidth required by a code request, the new code request cannot
be satisfied. In this paper, without loss of generality, we assume that all requests
in σ can be satisfied (since we can easily check whether a new code request can
be satisfied), and after each request is satisfied, a legal assignment results.
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The OVSF code assignment problem is hard, and the approach has often been
to produce heuristics, whose performance is measured by the approximation
(or competitive) ratio, which compares the cost of the algorithm to the cost
of optimal off-line scheme where cost is the total number of assignments or
reassignments done by the algorithm.

The problem has been studied extensively in recent years, and we have the
off-line and online versions of this problem.

– Off-line CA Problem
Given a sequence σ of code operations, find a sequence of code assignments
such that the total number of reassignments is minimum, assuming the ini-
tial code tree is empty. This problem was proved to be NP-hard by Marco
Tomamichel [11], who also gave an exponential-time algorithm to solve it.

– Online CA Problem
The operations in the sequence σ arrive through time. At any time t > 0, we
only know about the operations until t and have no information about any
future operation Ct′ with t′ > t. The problem is to find a sequence of code as-
signments such that the total number of reassignments is minimum. Erlebach
et al [5] gave an O(h)-competitive algorithm for this problem, where h is the
height of the OVSF code tree. They also proved that the lower bound on
the competitive ratio of this problem is 1.5. With resource augmentation [7],
which means the online algorithm is allowed to use more bandwidth than
the optimal scheme, a 4-competitive algorithm with a double-bandwidth
code tree was given in [5] .

In this paper, we focus on the Online CA Problem. In Section 2, for the
single-cell context, we give a new constant-competitive algorithm, using less
extra bandwidth (less resource augmentation) to improve upon previous results.
As far as we know, the Online CA Problem for multi-cell cellular networks has
not been studied. In Section 3, we apply the techniques used in Section 2 in
the context of the whole multi-cell cellular network to give a new constant-
competitive algorithm.

2 Code Assignment in a Single Cell

Our online algorithm, Online-CA-Cell, makes use of extra resource in the form
of an additional, albeit smaller, OVSF tree. Therefore, we talk about code as-
signments in the main OVSF tree and in a separate extra OVSF tree.

There are two properties that Online-CA-Cell seeks to maintain: (a) for any
set of mutually orthogonal free codes in the main tree, there is at most one free
code at each level; and (b) at each level of the extra tree, there is at most one
assigned code. Fig. 2(a) shows an example of a main tree that have assigned
codes, which are sorted and compacted. “Sorted” means that assigned codes are
in non-decreasing order in terms of level (from left to right); and “compacted”
means that, at each level, there is at most one free code. Fig. 2(b) gives an
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(a) Main tree (b) Extra tree

Fig. 2. Structure with assigned codes (shown as solid circles)

example of an extra tree. Online-CA-Cell is comprised of the method for handling
each code request and the method for handling each code release.

When a level-i code request arrives, Online-CA-Cell first tries to satisfy the
request in the main tree. Note that, we need only to consider assignment or
reassignment at level i or higher in the main tree, since the total bandwidth of
any set of mutually orthogonal free codes at lower levels is not large enough to
satisfy a request for level i (because there is at most one free code at every level).
If there is no free code at level i in the main tree, Online-CA-Cell will then try
to satisfy the request by assigning a code from the extra tree, and if the extra
tree already contains an assigned code at level i, Online-CA-Cell will reassign
the leftmost assigned code at the lowest level j > i in the main tree so as to free
its offsprings in the main tree in order to accommodate the new request and the
request of the assigned level-i code in the extra tree. The pseudo-code for code
request is as follows:

Code-Request(R,i)——allocate a free code to satisfy the request R of level i

if the main tree has a free code at level i then
Assign that free code to R.

else if the extra tree contains no assigned node at level i then
Assign the rightmost free code at level i in the extra tree to R.

else
Let w be the leftmost assigned code at lowest level j > i in the main tree.
Apply Code-Request(Req(w),j) so as to free up w and its offspring codes.
Assign the leftmost free code of level i in the main tree to R.
For those assigned codes in the extra tree from level i to level j − 1

(if they exist) reassign them to the main tree.
end if

When a level-i code release of code x arrives, Online-CA-Cell might have to
reassign the rightmost assigned code y at level i to x in order to maintain the
compactness of the tree. The freeing up of y, however, could mean that there
would be more than one free node at level i. So, part of the algorithm is to fix
this up. The pseudo-code for code release is as follows:

Code-Release(x,i)——release code x at level i

Let y be the rightmost assigned code at level i (in either main or extra tree).
if x = y then Free x
else Reassign y to x, freeing up y.
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end if
if there are two free codes at level i of the main tree, they must be children of
z then Apply Code-Release(z,i + 1)
end if

Let the amortized cost of each code request be 3 credits and each code release
be 2 credits because a code assignment/reassignment costs 1 credit, while freeing
a code costs 0. Next, we will define the potential function f (Fig. 3). We shall
show that the amortized cost of a code request or a code release can pay for the
assignment/reassignment costs and the change of potentials.

The intuition behind the definition of potential function f is the following.
The seven different cases shown in Fig. 3 exhaust all possible configurations of
the assigned codes at level i. Configurations C2, C5 and C7, which have 0, 1 and
more than one assigned codes in the main tree, respectively, have an assigned
code in the extra tree and have a potential value of 2 credits to compensate for
the reassignment cost of bringing the assigned code in the extra tree back to the
main tree if needed. Their corresponding configurations without assigned codes
in the extra tree (i.e. C1, C4 and C6) do not carry any potential credits. The
remaining configuration C3, which is the only configuration having an assigned
code and a free code in the main tree (thus no assigned code in the extra tree), is
associated with 1 potential credit to compensate for the cost of the reassignment
of the rightmost code upon any code release at this level or lower levels.

Lemma 1. Assume each code request is associated with 3 credits. The number
of credits at each level of the main and extra tree, as defined by the potential
function f as given in Fig. 3, will be maintained after each code request as
described in Online-CA-Cell.

Proof. According to Code-Request(R,i), when a request R arrives at level i:

if the main tree has a free code at level i: This configuration may be C1
or C3, whose potential value is 0 or 1. Note that C1 can have one or no
free codes. After the assignment, the configuration is changed to C4 or C6
and the remaining number of credits is either 2 or 3 (code request cost +
configuration potential − assignment cost), which is larger than the po-
tential values of C4 and C6.

else if the extra tree contains no assigned code at level i: This configu-
ration may be C1, C4 or C6, whose potential value is 0. After the assignment,
the configuration is changed to C2, C5 or C7 whose potential value is 2. Thus,
the amortized cost of the code request can cover exactly the assignment cost
and change of potential.

else (There is an assigned code in the extra tree.) The configuration may be C2,
C5 or C7 with potential value 2. After the assignment and Code-Request(Req
(w),j), the configuration is changed to C6 with potential value 0. Since
we have to do two assignment/reassignments in this level, 3 credits will
be left behind to cover the reassignment costs at higher levels, i.e. Code-
Request(Req(w),j). Note that, for those levels between i and j − 1 whose
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Fig. 3. Potential function of each level of the code tree, solid circle denotes an assigned
code, empty circle denotes a free code, gray circle may or may not be an assigned code

assigned codes are reassigned to the main tree, the reassignment costs can
be covered by the change of potential. ��

Lemma 2. Assume each code release is associated with 2 credits. The number of
credits at each level of the main and extra tree as defined by the potential function
f as given in Fig. 3 will be maintained after each code release as described in
Online-CA-Cell.

Proof. According to Code-Release(x, i), when a code x of level i is released:

Reassign y to x where y is the rightmost assigned code at level i:This
costs one credit if y �= x exists.

After the assignment, the configuration cannot be C2, C5 nor C7.
If there is at most one free code at level i of the main tree: The con-

figuration must be C1, C4, C3 or C6 derived respectively from C4, C5, C6 or
C7. We can easily check that the 2 credits associated with the code release
operation can cover one reassignment cost and the increase of potential value
of C3 (no increase of potential value for C1, C4 and C6).

If there are two free codes at level i of the main tree: After Code-Rele-
ase(z,i + 1), the final configuration may be C1, C4 or C6 with potential
value 0, respectively derived from the initial configuration C4, (C3 or C5), or
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(C3 or C7). Since the code release operation has 2 credits and freeing a code
costs nothing, the remaining credits in level i is at least 2 (from the change
of potential), which can cover the reassignments at level i + 1, i.e. Code-
Release(z, i + 1). ��

Theorem 1. Given a code tree T and extra tree T ′, which contains half the
bandwidth of T , Algorithm Online-CA-Cell is 5-competitive.

Proof. Since the extra tree can contain at most one code at all levels from 1
to h − 2, the total bandwidth of the extra tree is at most half of T . Note that
an extra code at level h − 1 is not possible because that would imply the total
bandwidth of all assigned codes is larger than the bandwidth of T .

Suppose there are m1 code requests and m2 code releases in the sequence.
From Lemmas 1 and 2, we can see that, at any step, the credit of each level is
at least 0. Thus, the total cost of Online-CA-Cell is at most 3m1 + 2m2 ≤ 5m1
since the number of releases is at most the number of requests. The optimal cost
is at least m1, and so, the competitive ratio of Online-CA-Cell is at most 5. ��

With the observation that the algorithm is k-competitive without any extra
resource if each code request/release involves only a fixed number k of levels, we
have a new 5-competitive algorithm with a extra code tree of 1/8 full bandwidth.
We partition the main code tree into a lower part and an upper part. The lower
part contains all the assigned codes from level 1 to h − 4 and its configuration
is similar to the main tree and extra tree as described before. The extra tree
contains codes from levels 1 to h− 4, and thus, the total bandwidth of the extra
tree is 1/8 of the code tree. The upper part contains the assigned codes from
level h−3 to h−1 which are sorted and compacted. Between the lower part and
upper part, there is no free code of level h−3. The potential of configurations at
level i (1 ≤ i ≤ h−4) is the same as the potential function defined in Fig. 3, and
each code request and code release is associated with 3 and 2 credits respectively.
The algorithm for code request/release is the same as before for levels 1 to h− 4
and keeps the assigned codes sorted and compacted for levels h − 3 to h − 1.

When a code request (or release) arrives at level i (1 ≤ i ≤ h − 4), if the
algorithm does not affect upper level h − 3, we can say the competitive ratio
in this case is at most 5; otherwise, the algorithm in the lower part will give 3
(2 for release) credits to the upper part, which is enough to cover the cost of
reassignments in the three levels from h − 3 to h − 1 (in the case of release, the
two levels h − 3 and h − 2 since reassignment at level h − 1 is not possible). So,
we can also say that the competitive ratio in this case is at most 5.

When a code request or release happens at level i (h − 3 ≤ i ≤ h), since the
process does not affect the lower part, the competitive ratio in this case is at
most 3. Thus, we have the following result.

Theorem 2. Given a code tree T and extra tree T ′ which contains 1/8 the
bandwidth of T , we can have a 5-competitive algorithm.
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3 Code Assignment in Cellular Networks

The geographic area of a mobile communications network is usually divided into
many small cellular regions and call requests may be made at any cell. The code
assignment in a single cell can be considered as a special case of code assignment
in multi-cell cellular networks. In this section, we study the online OVSF code
assignment problem in multi-cell cellular networks.

In cellular networks, each cell contains a base station, which communicates
with other base stations via a high-speed wired network. Communications be-
tween any two users (even within the same cell) must be established through
base stations. When a call request arrives, the nearest base station must assign
a code, whose bandwidth matches with the bandwidth of the call request and
which is orthogonal to all the assigned codes in the OVSF code tree of its own
cell and its neighboring cells in order to avoid interference.

Communications in cellular networks have been widely studied [1,2,3,4,8], but
mainly focus on Frequency Division Multiplexing (FDM) networks, which are
the backbone for 1G/2G wireless communications. This is the first study on
OVSF code assignment in cellular network. We will give a constant-competitive
algorithm for OVSF code assignment in cellular networks with resource augmen-
tation [6].

The cellular network can be 3-colored with {R, G, B} so that each cell has one
color and neighboring cells have different colors. Each cell with a different color
can use a different code tree for handling code requests and releases initiated at
that cell. In order to achieve a constant-competitive ratio, a total of six code trees
with full bandwidth will be needed using the resource augmentation approach
given in [5], whereas 3.375 code trees with full bandwidth would be sufficient
using the approach in Section 2. However, we will introduce here an algorithm
with a competitive ratio of 5 that uses only 19/8 = 2.375 code trees of full
bandwidth. Fig. 4 depicts three code trees T1 , T2 and T3, with the heights of T1

T2T1

TR TG TB TS

level h − 1

level h − 2

T3

Tr Tg Tb

level h − 3

Fig. 4. Three code tree used by Online-CA-Network

and T2 being h and the height of T3 being h − 2. The off-line optimal algorithm
uses only one code tree with height h. Let the left and right subtree of T1 be
TR and TG, and those of T2 be TB and TS, and let the three equal-bandwidth
subtrees with height h − 4 of T3 be Tr, Tg and Tb.

The cell with color X will use TX as its main tree and Tx as its extra tree.
TS will be shared by all cells. We will show in Theorem 3 that conflicts from
different cells can never occur.
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Online algorithm Online-CA-Network can be described as follows:

– For cells colored X (X ∈ {R, G, B}), perform Online-CA-Cell on TX and Tx

as the main and extra trees for all call operations in the cell colored X . In
case the bandwidth of TX is not enough, use TS and Tx for those calls that
cannot be accommodated by TX .

– When a code request asks for the bandwidth of the whole code tree, assign
the root of T1, since there will be no other assigned code in this cell and its
neighboring cells.

Theorem 3. Online-CA-Network is a 5-competitive algorithm for the online
OVSF code assignment problem with augmentation ratio of 19/8.

Proof. As all neighboring cells use different code trees, there will be no interfer-
ence as long as all the assigned codes in each cell are mutually orthogonal. Since
Online-CA-Cell is applied to handle code operations in each cell, orthogonal
assigned codes are ensured if Online-CA-Cell works properly with TX and TS ,
which is trivially true if TS is not used by any other cells. Suppose TS contains
codes at level l assigned to call requests from a cell X . The total bandwidth of
these codes must be greater than the total bandwidth of the free codes in TX

(the main tree is “sorted” and “compacted”). Since the bandwidth of TX is B/2,
assuming that the total bandwidth of the code tree is B, the total bandwidth of
the assigned codes in the cell X is greater than B/2. Since the off-line optimal
algorithm uses only one code tree, the total bandwidth of neighboring cells is
no more than B. So the total bandwidth in each cell neighboring with X must
be strictly less than B/2. Therefore, we can ensure that TS is used by at most
one cell at any time, which means that the assigned codes in the main trees in
cellular network do not affect each other.

As for each extra tree in T3, the bandwidth is 1/8 of T1 (TX and TS), i.e.,
B/8. From Section 2, we know this is sufficient to handle all the extra codes, and
the three subtrees of T3 in the whole cellular network do not affect each other.

Since the analysis and code operations are similar to that in Online-CA-Cell,
the competitive ratio of Online-CA-Network in the cellular network should be
the same as the competitive ratio of Online-CA-Cell, which is 5-competitive. ��

The following result applies in the special case where all code requests are at the
same level.

Theorem 4. There exists a 2-competitive algorithm with augmentation ratio of
2 that solves the code assignment problem when all requests are at the same level.

Proof. We use two code trees T1 and T2. Similar to Fig. 4, let the two subtrees
of T1 be TR and TG, and let those of T2 be TB and TS. Since all the requested
bandwidth are the same, the extra trees as given in T3 may not be needed.

Suppose there are m1 code requests and m2 code releases in a given sequence
of code operations. Since each code request has 1 credit to pay for the assignment,
and each code release has 1 credit to pay for the reassignment of the rightmost
assigned code, the cost of our scheme is at most m1 + m2 ≤ 2m1 since the
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number of releases is no more than the number of requests. Note that the cost of
the optimal off-line algorithm is at least m1, and so we can say that our scheme
is 2-competitive. ��
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Abstract. In this paper we propose a polynomial time algorithm for the
optimal rate and power allocation problem in a two cell CDMA network.
We assume continuous rates and limited powers for the base stations.

1 Introduction

The inherit capacity restrictions due to scarce resources are fundamental prob-
lems in the operation of a wireless CDMA system. At the operational level (time
scale of minutes), load fluctuations occur due to randomness in call generation
and call lengths. At this time scale, load balancing is carried out via power and
rate assignment as well as a reconfiguration of calls over cells. Power and rate
assignment requires an underlying policy or network optimality criterion.

Common optimality criteria for CDMA network optimization are equal rate
to all calls, or maximum total network data rate. Equal rates to all calls seems
fair from a call perspective, but is rather inefficient in networks sustaining a
normal load, mainly due to calls far away from base transmitter stations (BTS)
causing a large amount of interference, and therefore a substantial reduction in
network capacity. An important question in achieving maximum data rate is the
assignment of data rates to individual calls. This assignment is clearly closely
related to power assignment. This paper addresses, in an analytical setting, the
joint power and rate assignment in two cells in a CDMA network.
Literature. The joint rate and power assignment problem for CDMA systems
has received considerable attention over the last decades. Due to the complexity
of the problems, several restrictions have been made, in order to obtain mathe-
matically tractable models.

The most common simplifications are considering a cell in isolation, thus ne-
glecting the interference effects, or assuming some extra properties of rates/
powers, like unlimited rates or powers. For the simplified model of a single cell
in isolation, down link power assignment schemes for maximizing the through-
put or minimizing the total power in the cell are proposed in [8,5,12]. Resource
assignment in a multi cell environment is more complex than in one cell, due
to the interferences caused by users in adjacent cells. It has been studied in the
framework of cell-breathing for fixed data rates, see e.g. the pioneering work of
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[7], [11] that consider the uplink, that in the early days of CDMA was considered
to be the bottle-neck. For the down link, joint rate and cell assignment is stud-
ied in [9] via a dynamic pricing algorithm under the assumption that each base
station maximizes its total system utility, without considering the status of the
other cells. In [2] an distributed algorithm for assigning base station transmitter
(BTSs) powers such that the common rate of the users is maximized is described.
In [10], Perron-Frobenius theory is used to design an approximate algorithm for
a model with multiple rates, which permits the use of techniques from convex op-
timization. In [4], the authors propose a polynomial time approximation scheme
for the joint rate and power assignment problem under the assumption that the
rates allocated are discrete and the power of the base stations is unlimited.
Contribution and Outline. This paper proposes a fast and exact joint rate
and power allocation algorithm in the down link of a telecommunication network
formed by two cells, where the base stations transmit at limited powers. Thus,
we incorporate in our model two important aspects of a CDMA network, namely
interference and limited powers. We assume that the rates are continuous and
may be chosen from a given interval. This assumption seems realistic, since in a
CDMA system data rates may be rapidly modified in accordance with channel
conditions, resulting in an average rate that lies in an interval.

Section 2 provides the model and describes the resulting optimization prob-
lem. Due to the impact of the interference between users in different cells, this
problem is much more difficult then the rate/power optimization problem in one
cell, and it is more difficult then the problem with unlimited powers. In Section
3 we show that despite its non-convexity, the optimal solutions can be very well
characterized. We prove that the optimal rate allocations are monotonic in a
function of the path loss . Based on this property, we show that in the optimal
rate allocation, only 3 rates are given to users. In Section 4 we propose a poly-
nomial time algorithm in the number of users that solves optimally the joint
rate and power allocation problem. Our algorithm can be generalized to solve
the optimal rate/power allocation problem in small networks, thus providing a
first step into the direction of fast algorithms for resource allocation in a large
network. We conclude with some remarks and open problems in Section 5.

2 Model

We consider a system with mobile users served by 2 base transmitter stations
(BTSs), X and Y. Denote by UX , respectively UY , the set of mobiles served by
BTS X, respectively BTS Y. Let li,X denote the path loss from BTS X to mobile
i, let Ni be the thermal noise at the location of mobile i, and let εi denote the
energy per bit to interference ratio requirement for mobile i. Let PiX denote
the transmission power of BTS X to mobile i, and PX the maximum down link
transmission power of BTS X . The power received by mobile i from BTS X is
P rec

iX = PiX li,X . We assume that mobiles are served by a single BTS, which is
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a natural assumption for moving mobiles. A configuration of mobiles is feasible
when for each mobile i served by BTS X , say, the energy per bit to interference
ratio exceeds the threshold εi. If a configuration is feasible, then under perfect
power control the energy per bit to interference ratio

(
Eb

I0

)

i
equals this threshold.

Thus, assuming perfect power control, feasibility for a configuration in which
mobile i is served by BTS X is characterized by,

(
Eb

I0

)

i

:=
W

ri

PiX li,X
αli,X(

∑

j∈UX

PjX − PiX) + li,Y
∑

j∈UY

PjY + Ni
= εi, (1)

where UX is the set of mobiles served by BTS X , W is the system chip rate, α
is the down link orthogonality factor, and ri is the data rate for mobile i.

Data rates can be assigned from the continuous interval [rmin, Rmax], with
rmin > 0. The optimization problem is to determine an assignment of rates and
powers to mobiles that maximizes the total rate.

For each fixed number of mobile calls placed in the coverage area, the rate
assignment problem can be formulated as the following optimization problem:

max
∑

i∈U

ri

s.t.
(

Eb

I0

)

i

= εi, i ∈ U,

P(n)
∑

i∈UX

PiX ≤ PX ,

∑

i∈UY

PiY ≤ PY ,

ri ∈ [rmin, Rmax], i ∈ U,

PiX ≥ 0, ∀i ∈ UX ∪ UY .

3 Characterization of an Optimal Rate Assignment

For clarity of presentation, we assume that all users have the same threshold
εi = ε. Denote V (ri) = εri

W+αεri
, and let

li =

{
li,Y

li,X
, for i ∈ UX ,

li,X

li,Y
, for i ∈ UY .

According to Lemma 1.1. in [4], P (n) can be rewritten as:
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P (n) : R(n) = max
∑

i∈U

ri

s.t.

(

1 − α
∑

i∈UX

V (ri)

)

x −
∑

i∈UX

V (ri)liy −
∑

i∈UX

V (ri)l−1
i,XNi = 0, (2)

−
∑

i∈UY

V (ri)lix +

(

1 − α
∑

i∈UY

V (ri)

)

y −
∑

i∈UY

V (ri)l−1
i,Y N i

i = 0, (3)

PX − x ≥ 0, (4)
PY − y ≥ 0, (5)
x ≥ 0, (6)
y ≥ 0, (7)
Rmax − ri ≥ 0, for i ∈ UX ∪ UY , (8)
ri − rmin ≥ 0, for i ∈ UX ∪ UY . (9)

Notice that this is neither a linear programming nor a convex programming
problem. We assume that the rate assignment problem above has at least one
feasible solution, or, in other words, that there exist powers PX , PY , such that
assigning minimum rate to all users is feasible.

For later reference, we also provide the Lagrangian. Let λ ∈ R
6, μ, ν ∈ R

|U|

be the Lagrangian multipliers corresponding to equations (2)-(9). Denote by
r = (ri)i∈UX∪UY the vector of the rates allocated to users. The Lagrangian
corresponding to P (n) is

L(x, y, r, λ, μ, ν) =
∑

i∈U

ri

+ λ1((1 − α
∑

i∈UX

V (ri))x −
∑

i∈UX

V (ri)liy −
∑

i∈UX

V (ri)l−1
i,XNi))

+ λ2

(

−
∑

i∈UY

V (ri)lix + (1 − α
∑

i∈UY

V (ri))y −
∑

i∈UY

V (ri)l−1
i,Y N0

)

+ λ3(PX − x) + λ4(PY − y) + λ5x + λ6y

+
∑

i∈U

μi(Rmax − ri) +
∑

i∈U

νi(ri − rmin).

Next we will characterize the optimal rate assignment. We start with a
monotonicity property of the rates.

Theorem 1. If P (n) is feasible, and (x∗, y∗, r∗) is an optimal solution, then for
any two calls i and j, say, in cell X,

y∗li + l−1
i,XNi < y∗lj + l−1

j,XNj ⇒ r∗i ≥ r∗j . (10)

A similar statement holds for cell Y.
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Proof. Suppose there exist two calls i, j ∈ UX such that liy
∗ + l−1

i,XNi < ljy
∗ +

l−1
j,XNj and r∗i < r∗j .
Define the following rate vector r̂ ∈ R

|UX |+|UY |:

r̂k =

⎧
⎪⎨

⎪⎩

r∗k, for k ∈ UX ∪ UY \ {i, j}
r∗j , for k = i,

r∗i , for k = j,

i.e., with rate assignment to calls i and j interchanged. As the total rate is
unchanged, the throughput of the rate assignments r and r̂ is the same. Let

x̂ =

∑
i∈UX

V (r̂i)(liy∗ + l−1
i,XNi)

1 − α
∑

i∈UX
V (r̂i)

. (11)

It can be easily seen that x̂ < x∗.

Note that (x̂, y∗, r̂) is not a feasible solution of P (n), since it does not satisfy
constraints (2) and (3). However, we can obtain a feasible solution by increasing
the rates r̂ for users in UX \ {j}, until power x∗ is reached in (11) or all rates
in UX \ {j} are maximal. Denote by (r̃)UX the rate assignment obtained in this
way. Suppose that (r̃k)k∈UX\{j} = (Rmax)UX\{j}. By decreasing y∗ such that
(3) is satisfied, while the rates for users in UY remain the same, we obtain a
power/rate allocation with a higher throughput then r∗. If x∗ was reached in
(11), then (x∗, y∗, (r̃k)k∈UX , (r∗k)k∈UY ) is a feasible solution of P (n) which gives
a higher throughput then (x∗, y∗, ((r∗k)k∈UX , (r∗k)k∈UY ). This contradicts the fact
that (x∗, y∗, r∗) is an optimal solution. Hence, it must be that r∗i ≥ r∗j .

Denote by h1(x, y, r), ..., h6(x, y, r) the functions in the left hand side of
constraints (2)-(7) and by g1(x, y, r),...,g2|UX |+2|UY |(x, y, r) the functions in the
left hand side of constraints (8)-(9).

We will first review some optimization terminology (see [3]). If an inequal-
ity constraint of P (n) is satisfied with equality in a feasible vector (x, y, r) ∈
R

|UX |+|UY |+2 of P (n), the constraint is active in (x, y, r). Denote by A(x, y, r)
the set of active inequalities in the point (x, y, r). A feasible vector (x, y, r) is
regular if the gradients ∇h1(x, y, r), ∇h2(x, y, r) and ∇hi(x, y, r), ∇gj(x, y, r)
for i ∈ A(x, y, r)

⋂
{3, 4, 5, 6}, j ∈ A(x, y, r) are linearly independent.

Notice that ∇h1(x, y, r), ∇h2(x, y, r) are linearly independent for any feasible
(x, y, r) , so that all points with A(x, y, r) = ∅ are regular. Further, note that
since rmin > 0, x 
= 0 and y 
= 0 in the optimal solution. Moreover, since the
objective function is linear, each optimum must be a global optimum.
We will start by characterizing the rate assignment for regular points. In the
proofs that follow, we will make use of the Karush-Kuhn-Tucker (KKT) neces-
sary conditions for a regular point to be an optimal solution (see [3]). They state
that for a regular point (x∗, y∗, r∗) that is an optimum of P (n) there exists an
unique multiplier vector (λ∗, μ∗, ν∗) such that:
(K1) �(x∗,y∗,r∗)L(x∗, y∗, r∗i , λ∗, μ∗, ν∗) = 0, where L denotes the Lagrangian
function corresponding to P (n).
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(K2) λ∗
k ≥ 0, for k ∈ {3, 4, 5, 6}, μ∗ ≥ 0 and ν∗ ≥ 0,

(K3) The Lagrangian multipliers corresponding to non active constraints are
equal to 0.

Theorem 2. If P (n) is feasible and (x∗, y∗, r∗) a regular optimal solution, then
a) x∗ = PX or y∗ = PY or r∗i = Rmax, for each call i ∈ UX ∪ UY .
b) If the rates of two calls i, j ∈ UX satisfy rmin < ri < Rmax and rmin < rj <
Rmax, then liy

∗ + l−1
i,XNi = ljy

∗ + l−1
j,XNj and ri = rj . A similar statement holds

for cell Y.

Proof. a) Note that since the minimum rate can be ensured to all accepted users,
constraints (2) and (3) imply that x∗ > 0 and y∗ > 0. Thus, based on condition
(K3), we conclude that λ∗

5 = λ∗
6 = 0. Suppose that x∗ < PX , y < PY and

rmin ≤ ri < Rmax for a call i ∈ UX , say.
From (K3), follows that λ∗

3 = λ∗
4 = 0 and that μ∗

i = 0.
Moreover, (K1) imply that ∂L

∂x (x∗, y∗, r∗, λ∗, μ∗, ν∗)= 0,∂L
∂y (x∗, y∗, r∗i , λ∗, μ∗, ν∗)

= 0, and ∂L
∂ri

(x∗, y∗, r∗, λ∗, μ∗, ν∗) = 0. Hence,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ∗
1

(

1 − α
∑

i∈UX

V (r∗i )

)

− λ∗
2

∑

i∈UY

V (r∗i )li = 0

−λ∗
1

∑

i∈UX

V (r∗i )li + λ∗
2

(

1 − α
∑

i∈UY

V (r∗i )

)

= 0.

1 + ν∗
i − μ∗

i − λ∗
1V

′(ri∗)(αx∗ + liy
∗ + l−1

i,XNi) = 0.

(12)

Observe that the first two equations in λ∗
1, λ

∗
2 are linearly independent (recall

constraints (2)-(3) and the assumption that a minimal rate assignment is feasi-
ble), so the only solution is λ∗

1 = λ∗
2 = 0.

Further, since μ∗
i = 0, from the third equation in (12) follows that νi = −1,

which contradicts condition (K2), that ν∗
i ≥ 0.

Hence, in an optimal solution, either the rates of all users are maximal, or the
power in one of the cells is maximal.
b) Suppose that there exist two different values liy

∗ + l−1
i,XNi, ljy

∗ + l−1
j,XNj ,

respectively, for which the corresponding rates are rmin < r∗i < Rmax and rmin <
r∗j < Rmax. Without loss of generality, we assume that liy

∗ + l−1
i,XNi < ljy

∗ +
l−1
j,XNj. From Theorem 1, it follows that r∗i ≥ r∗j .

Since rmin < r∗i < Rmax and rmin < r∗j < Rmax, condition (K3) imply that

μi = μj = νi = νj = 0.

Hence, (12) implies that

V ′(r∗i )
V ′(r∗j )

=
αx∗ + ljy

∗ + l−1
j,XNj

αx∗ + liy∗ + l−1
i,XNi

.

Our assumption ljy
∗+l−1

j,XNj > liy
∗+l−1

i,XNi implies that V ′(r∗i ) > V ′(r∗j ). Since
the function V ′ is decreasing, it follows that r∗i < r∗j , which contradicts Theorem
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1. We conclude that if the rates of two users i, j ∈ UX satisfy rmin < r∗i < Rmax
and rmin < r∗j < Rmax, then liy

∗+l−1
i,XNi = ljy

∗+l−1
j,XNj . Clearly, it then follows

that r∗i = r∗j .

Corollary 1. Let (x∗, y∗, r∗) be regular and an optimal solution of problem
P (n). Suppose that calls in cell X, respectively in cell Y are ordered in increasing
order of their liy

∗ + l−1
i,XNi, respectively ljx

∗ + l−1
j,Y Nj values. Then, there exists

a positive number A(y∗), such that for each i ∈ UX with liy
∗ + l−1

i,XNi < A(y∗),
r∗i = Rmax and for each i ∈ UX with liy

∗ + l−1
i,XNi > A(y∗), r∗i = rmin. More-

over, there exists a positive number B(x∗), such that for each j ∈ UY with
ljx

∗ + l−1
j,Y Nj < B(x∗), r∗j = Rmax and for each j ∈ UY with ljx

∗ + l−1
j,Y Nj >

B(x∗), r∗j = rmin.

For a non regular point, the following theorem gives a complete characterization
of the optimal power and rate assignment.

Theorem 3. For each non regular point (x, y, r), the following conditions are
satisfied:
a) x = PX or y = PY

b) If x = PX and y 
= PY , then ri ∈ {rmin, Rmax}, for each i ∈ UX.
c) If y = PY and x 
= PX , then ri ∈ {rmin, Rmax}, for each i ∈ UY .

Proof. Let (x, y, r) be a non regular point, feasible for P (n). Consider the matrix
M formed by the ∇h1(x, y, r), ∇h2(x, y, r) and ∇hi(x, y, r), ∇gj(x, y, r) for i ∈
A(x, y, r)

⋂
{3, 4, 5, 6}, j ∈ A(x, y, r). Let K be the number of active inequality

constraints. Notice that for a non-regular point it must be that K > 0, since
∇h1(x, y, r), ∇h2(x, y, r) are linearly independent. Clearly, 2 ≤ rank(M) ≤
K + 2.

a) Suppose that x 
= PX and that y 
= PY . In other words, the active inequality
constraints correspond to the constraints on rates. Then, matrix M has the
following form:

M =

⎛

⎜
⎜
⎜
⎜
⎝

1 − α
∑

i∈UX
V (ri) −

∑
i∈UX

V (ri)li A 0
−

∑
i∈UY

V (ri)li 1 − α
∑

i∈UY
V (ri) 0 B

0 0 C 0
0 0 0 D

⎞

⎟
⎟
⎟
⎟
⎠

,

where the vectors A ∈ R
|UX |, B ∈ R

|UY | are defined as follows:

A = [−V ′(ri)(αx+ liy+ l−1
i,XNi)]i∈UX , B = [−V ′(ri)(αy+ lix+ l−1

i,Y Ni)]i∈UY ,

and the matrices C ∈ R
|{i∈UX :gi∈A(x,y,r)}|×R

|{i∈UX}|, D ∈ R
|{i∈UY :gi∈A(x,y,r)}|

×R
|{i∈UY }| are obtained from the diagonal square matrices with diagonal

diag(C) = [I{ri=rmin})−I{ri=Rmax}]{i∈UX}, diag(D) = [I{ri=rmin})−I{ri=Rmax}]{i∈UY },
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by deleting all rows for which the diagonal elements equals zero, where I{a} = 1
if a is true, and 0 otherwise.

Clearly, rank(C) + rank(D) = K. Since constraints ∇h1(x, y, r), ∇h2(x, y, r)
are linearly independent, it follows that rank(M) = K + 2, which contradicts
the fact that (x, y, r) is non regular. Hence, in a non regular point, the power
assigned to one of the cells has to be maximal.

b) Suppose that x = PX and y 
= PY and that there exist i ∈ UX such that
rmin < ri < Rmax. It can be proved that the rank of the matrix M is again
rank(M) = K + 2, which contradicts the fact that (x, y, r) is non regular.

c) The proof is similar to b).

4 Algorithm for Optimal Rate and Power Assignment

Based on Theorems 1-3 and Corollary 1, we now propose on algorithm for finding
the optimal solution of P (n). The algorithm relies on a reduction of the opti-
mization problem P (n) to a series of optimization problems in R. Notice that
the algorithm considers the regular and non regular points.

If maximum rate to all users is feasible, then the optimal solution has been
found. To check whether the maximum rate is feasible, one only has to check
if the corresponding powers calculated from (2)-(3) satisfy 0 ≤ x ≤ PX and
0 ≤ y ≤ PY . If this is not the case, then the algorithm calculates the rate
allocation achieving maximum throughput for the case when the power in cell
X is maximal, respectively the power in cell Y is maximal. The algorithm will
choose among these 2 allocations the one with higher throughput. Note that if
the rates are known, from (2), (3) and (1) the powers of each user can be derived.

Next we will consider the case when in cell X the base station transmits at
maximum power, i.e., x∗ = PX . The case y∗ = PY can be treated similarly. The
algorithm provides a reduction of the optimization problem P (n) that is based
on a search procedure to find the values B(x∗) and A(y∗) introduced in Corollary
1 to obtain the set of mobiles at which the rate drops from Rmax to rmin in both
cells. As the set of mobiles for maximum power at cell X also depends on the
power assignment in cell Y , these sets cannot be determined independently.

Order the locations in cell Y in increasing order of ljPX + l−1
j,Y Nj .

According to Theorem 2 b) all users j in cell Y with rate rj ∈ (rmin, Rmax)
are characterized by the same value of ljPX + l−1

j,Y Nj and have the same rate rX .
Let B(PX) be this value and UY (B(PX )) = {j ∈ UY : ljPX + l−1

j,Y Nj = B(PX)}.
From Theorem 1 and Theorem 2 follows that for each j ∈ UY with ljPX +
l−1
j,Y Nj < B(PX), r∗j = Rmax and for each j ∈ UY with ljPX + l−1

j,Y Nj > B(PX),
r∗j = rmin. Suppose that s users in UY (B(PX)) have rate Rmax, v users have
rate rmin and the rest have rate rY . The rate rY is unknown at this stage of the
algorithm. The power assigned to cell Y , as a function of rY , can be determined
from constraint (3), and is given by
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y∗(rY ) =
�

j∈UY \UY (B(PX )) V (rj)(ljPX+l−1
j,XNj)+(sV (Rmax)+vV (rmin)+tV (rY ))B(PX)

1−α(
�

j∈UY \UY (B(PX )) V (rj)+sV (Rmax)+vV (rmin))+tV (rY )) .

Similarly, for a specific y∗(rY ), Theorem 2 b), implies that all the users i in cell
X with ri ∈ (rmin, Rmax) are characterized by the same value of liy

∗(rY )+l−1
i,Y N i

0,
say A(y∗(rY )). Denote by UX(A, B) = {i ∈ UX : liy

∗(rY )+l−1
i,XNi = A(y∗(rY ))}.

Then all i ∈ UX with liy
∗(rY ) + l−1

i,XNi < A(y∗(rY )), have rate Rmax and all
i ∈ UX with liy

∗(rY )+ l−1
i,XNi > A(y∗(rY )) have rate rmin. Suppose that u users

in UX(A, B) have rate Rmax, z users have a rate rX ∈ (rmin, Rmax) and the rest
have rate rmin. Then the rate rX can be expressed from (2) as follows:

rX(rY ) = W
ε

PX−�i∈Uz
X

(A,B) V (ri)(αPX+liy
∗(rY )+l−1

i,XNi)

(z−1)αPX+zA(y∗(rY ))+α
�

i∈Uz
X

(A,B) V (ri)(αPX+liy∗(rY )+l−1
i,XNi)

,

where Uz
X(A, B) denotes the set of users in UX with rate r ∈ (rmin, Rmax).

Note that if B(PX), s, v, u, z were known, rY would be the only unknown.
This suggests that by enumerating all the possible values of B(PX), s, v, u, z, the
problem could be reduced to an optimization problem in one variable, rY . The
optimization problem is not easy to formulate due to the fact that the value of
rY , more precisely y∗(rY ), is a decision variable in the assignment of Rmax and
rmin to users in UX (see Corollary 3). However, it can be easily seen that only
some values of y∗(rY ) induce a different rate allocation in cell X. Let

L = {
l−1
j1,X

Nj1 − l−1
j2,XNj2

lj2 − lj1
, j1, j2 ∈ UX}

⋂
R+.

Suppose that L 
= ∅. For all y∗(rY ) ∈ [Li, Li+1) the ordering of mobiles in
cell X, as determined by their value of liy

∗(rY ) + l−1
i,XNi is the same, but for

different intervals [Lj , Lj+1) this ordering may be different. Note that V (r) is
strictly increasing, so that y∗(rY ) is strictly increasing. As a consequence, each
unknown y∗(rY ) ∈ [Li, Li+1) yields a unique rY .
Hence, for y∗(rY ) ∈ [Li, Li+1), P (n) can be reduced to the following optimization
problem in R:

max zrX(rY ) + trY

s.t. y∗(rY ) ≤ PY

y∗(rY ) ∈ [Li, Li+1] (13)
rX(rY ) ∈ [rmin, Rmax]

rY ∈ [rmin, Rmax].

Thus, the original rate optimization problem can be reduced to O(|UX |2) opti-
mization problems in R, one for each interval [Li, Li+1).

If L = ∅, then the order of the users in UX does not depend on y∗(rY ) and we
obtain a similar optimization problem to (13), without the second constraint.

Note that the optimization problems (13) are constraint optimization prob-
lems in one variable, which can be easily solved.
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5 Conclusions

In this paper we have proposed an exact algorithm for the joint rate and power
allocation problem in two cells of a CDMA network. We have analyzed several
properties of the optimal solutions, based on which, we have proposed a poly-
nomial time algorithm for solving the problem. Our results can be extended to
non-decreasing utility functions at the cost of a rather involved notation. More-
over, the algorithm can be extended to iteratively solve the rate/power allocation
problem in a small number of cells.
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Abstract. Because of the scalability problem, the aggregation of flows
and the queueing/scheduling based on those flow-aggregates is unavoid-
able in Quality of Service (QoS) architectures for large scale networks.
We investigate the effect of flow aggregation on the end-to-end delay
bounds. It has observed that with traditional work-conserving schedulers,
the maximum burst size of each flow increases linearly as it traverses the
network. The increased maximum burst size does not affect the delay
bound of a flow in cases where the schedulers are flow-based. In cases
where deaggregation and aggregation take places in the middle of the
network, however, the increased maximum burst size affects severely in
terms of delay bound. This is in fact the case for the most of real net-
work deployments since at the edge of a subnetwork the flows have to
be deaggregated and then handed over to another subnetwork. We sug-
gest a simple alternative to the existing work-conserving scheduler, the
Smoothing-DRR (S-DRR) server, which is based on the Deficit Round
Robin (DRR) server. S-DRR has a non-work conserving characteristic.
S-DRR is proved to suppress the maximum burst size of the aggregated
flow to a constant throughout the path, so that the delay bound is only
linearly proportional to the hop counts.

1 Introduction

QoS characteristics of the network with Integrated Services (IntServ) [1] ar-
chitecture have been well studied and understood by numerous researches in
the past decade. Providing the allocated bandwidths, or service rates, or simply
rates of an output link to multiple sharing flows plays a key role in this approach.
Among a myriad of scheduling algorithms, we focus on the deficit round robin
(DRR) [2], because the sorted priority scheduling algorithms, including Packe-
tized Generalized Processor Sharing (PGPS), suffer from the complexity, which
is O(log N) at best while N is the number of active flows in a scheduler [3]. The
DRR, with many other rate-providing servers, is proved to be a Latency-Rate
server [4], or simply LR server. All the work-conserving servers that guarantee
rates exhibit this property and can therefore be modeled as LR servers. It was
shown that the maximum end-to-end delay experienced by a packet in a network
of LR servers can be calculated from only the latencies of the individual servers

M.-Y. Kao and X.-Y. Li (Eds.): AAIM 2007, LNCS 4508, pp. 211–220, 2007.
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on the path of the flow, and the traffic parameters of the flow that generated
the packet. More specifically for a leaky-bucket constrained flow,

Di ≤ σi − Li

ρi
+

N∑

j=1

Θ
Sj

i , (1)

where Di is the delay of flow i within a network, σi and ρi are the well known
leaky bucket parameters, the maximum burst size and the average rate, respec-
tively, Li is the maximum packet length and Θ

Sj

i is the latency of flow i at the
server Sj .

There is a significant volume of researches for networks with flow aggrega-
tion. End-to-end delay bounds with using fair aggregator was investigated [5].
It was shown that under condition that the scheduler is fair, the delay of an
aggregated flow is bounded. A fair scheduler, however, should be able to re-
frain itself from transmitting packets at full link capacity whenever one or more
flows are not active, i.e. do not have packets to transmit at the moment. This
mandates a non-work conserving type of scheduler behavior to bound the delay.
Using Guaranteed Rate (GR) servers [6] as fair aggregator was also investigated
[7], and the maximum end-to-end delay was obtained. It was concluded that
the aggregated scheduling provides even better delay performance than per-flow
scheduling. Contrary to the work with GR servers [7], we still find the traditional
per-flow scheduling performs better in general. This is because that the aggre-
gated scheduling does not protect the flow under observation from other flows
within the aggregate. If we have sufficiently large amount of burst from other
flows through aggregation and deaggregation, then the aggregated scheduling
performs quite poorly. This is obvious when we consider DiffServ as an extreme
QoS architecture where aggregation and deaggregation occur in every node. Fi-
nally we compare the end-to-end delays in each networks we analyzed.

2 Previous Works

We describe LR servers and its properties. The concept and the primary method-
ology for the analysis of LR servers are suggested by Stiliadis [8]. A server is
a commonly used terminology which in convention means the combination of a
scheduler and a transmitter that reside in a output port controller of a switch
or a router. We assume a packet switch (router) where a set of flows share a
common output link. We denote with ρi the bandwidth, or the rate allocated
to flow i. We assume that the switches (routers) are store-and-forward devices.
Let Ai(τ, t) denote the arrivals from flow i during the interval (τ, t] and Wi(τ, t)
the amount of service received by flow i during the same interval. In a system
based on the fluid-flow model both Ai(τ, t) and Wi(τ, t) are continuous functions
of t. In the packet-by-packet model, however, we assume that Ai(τ, t) increases
only when the last bit of a packet is received by the server; likewise Wi(τ, t) is
increased only when the last bit of the packet in service leaves the server. We
further denote that a flow i is backlogged when one or more packets of i are
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waiting for service. In other words, if Ai(0, t) − Wi(0, t) is larger than zero then
the flow i is backlogged at t. Therefore a backlogged period of flow i is any period
of time during which packets belong to flow i are continuously queued in the
server. Here we continue with some formal definitions on more time intervals.

Definition 1. A server busy period is a maximal interval of time during which
the server is never idle.

During a server busy period the server is always transmitting packets.

Definition 2. A flow i busy period is a maximal interval of time (τ1, τ2] such
that for any time t ∈ (τ1, τ2], packets of flow i arrive with rate greater than or
equal to ρi or, Ai(τ1, t) ≥ ρi(t − τ1).

Now we are ready for the definition and the primary characteristics of LR servers.

Definition 3. A server S belongs in the class LR if and only if for all times t
after time τ that the jth busy period started and until the packets that arrived
during this period are serviced WS

i,j(τ, t) ≥ max
(
0, ρi(t − τ − ΘS

i )
)
. ΘS

i is the
minimum non-negative number that satisfies the above inequality.

Lemma 1. If S is an LR server, and flow i is leaky bucket constrained with
parameters (σi, ρi), then the followings hold.

1. If QS
i (t) is the backlog of flow i at time t, QS

i (t) ≤ σi + ρiΘ
S
i .

2. If DS
i is the delay of any packet in flow i in server S, DS

i ≤ σi

ρi
+ ΘS

i .
3. The output traffic of flow i from S conforms to the leaky bucket model with

parameters (σi + ρiΘ
S
i , ρi).

Proof. See the proof of theorem 3.1 of [8].

Using lemma 1, in [9] it was shown that a FIFO server is an LR server for the
individual flows in an aggregate, as the following.

Lemma 2. Under a condition that all the input flows are leaky-bucket con-
strained, during a flow i busy period a FIFO server can provide service to flow i
as the following: WS

i (τ, t) ≥ max
(
0, ρi(t− τ − σ−σi

r − Li

r )
)
, where τ is a starting

time of flow i busy period.

Proof. See the proof of lemma 5 of [9].

Next we describe the detailed behavior of DRR, the server we will use in the
numerical analysis section, as a representative LR server. A DRR scheduler
maintains a deficit counter per each flow, thus per each queue. A flow i is assigned
with a quantum value φi, which represents a relative amount of service a flow
will receive. A round is defined as a time interval during which all the active
flows receive service opportunities, one per each flow. We will call this service
opportunity a turn of a flow. At the start of the flow i’s turn, the deficit value
δi is incremented as much as the quantum value of the flow, φi. The size of
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the head packet of the flow i then is compared with the δi. If δi is larger or
equal to the head packet size, then the head packet gets service and leave the
queue. Whenever a packet is served, δ is decremented as much as the size of the
served packet. The second head packet of the queue, which now becomes the
head packet is then compared with the δi again. This process continues until
the δi becomes smaller than the head packet. When this happens the next flow
enters a turn and the packets within this flow will be served. Using this policy,
the DRR can achieve O(1) complexity, given that the φi is set to be greater than
or equal to the maximum packet size of the flow i, for all i [10]. This is because
otherwise a flow may not receive a service at all during a turn, and the amount
of calculation required for serving a packet in a flow increases consequently.

In an accompanying research [4], DRR is proved to be an LR server. The
latency of the DRR server is given as

Θ DRR
i =

3F − 2φi

r
, (2)

where F is defined as the frame size, which is the sum of all φi over i, and r is
the output link capacity. Note that F does not represent the actual number of
bytes served during a specific round, but the average number of bytes served in
a round.

A simple yet efficient improvement to the DRR, the DRR with Instant Ser-
vice (DRR-IS), was later proposed. DRR-IS reduces the latency by about 30%
without any additional complexity [11]. By providing immediate access to the
server for a newly backlogged flow or queue, the DRR-IS reduces the latency to

Θ DRR-IS
i =

2F + φmax − φi

r
, (3)

where φmax is the maximum quantum size at the server.

3 Delay Bounds in Networks of LR Servers with Flow
Aggregations

A rationale for providing an amount of reserved service rate to an individual flow
in IntServ architecture is to protect the flow from other data traffic from un-
predictable sources that request best-effort service to the network, or malicious
users that purposefully violate the input constraints. All the LR servers success-
fully achieve this mission, at the cost of the complexity of per flow scheduling
and queueing. If we have a confidence in some of flows, however, that they never
violate the promised leaky bucket parameters, or the network itself can shape
the incoming traffic to conform to these parameters, then those trusted flows
can be aggregated into a fatter flow while still be guaranteed for QoS, therefore
we can greatly reduce the scheduling and queueing complexity in a server.

We consider a series of switches each with LR servers, a part of which is
depicted in figure 1. The (n − 1)th server from the network entrance, S(n − 1),
generates output traffic I

S(n−1)
out , or equivalently an aggregated flow of several
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Fig. 1. Flow aggregation and deaggregation in a switch

elemental flows including i, which is the flow under observation. The next switch
also has many output ports therefore many servers, including Sn to which i is
destined. Among the flows within I

S(n−1)
out , some of flows are switched to this

server. Let us denote by ISn
in such a set of flows. Note that ISn

in ⊂ I
S(n−1)
out . In

Sn, ISn
in is considered as a single flow, and queued into a single queue and served

accordingly. There are other elemental flows or aggregated flows from the same or
other input ports, which share the server Sn with ISn

in and then aggregated with
it, thus are consisted in ISn

out. Note that for the aggregation Sn does nothing more
than a normal LR server does. Also note that there may be other background
flows that share the servers but are not aggregated into flow ISn

out. The amount
of service given to the aggregated flow ISn

in is bounded as follows, because it is
served by an LR server: WSn

I,in ≥ max
(
0, ρSn

I,in(t − T0 − ΘSn
I,in)

)
, where T0 is a

starting time of a flow ISn
in busy period, ΘSn

I,in is the latency of the aggregated
flow ISn

in at Sn, and σSn
I,in =

∑
k∈ISn

in
σSn

k , ρSn
I,in =

∑
k∈ISn

in
ρk, where σSn

k is the
maximum burst size of a flow k within ISn

in . The delay of a packet within flow
ISn
in is also bounded by the lemma 1 as the following: DSn

I,in ≤ σSn
I,in/ρSn

I,in +ΘSn
I,in.

We are interested in the output traffic characteristics of the flow i within ISn
out.

Let WSn
i (τ, t) be the service given to the packets that belong to flow i, at the

server Sn during a time interval [τ, t). We argue the following.

Lemma 3. Under a condition that all the input flows within ISn
in are leaky-

bucket constrained, during a flow i busy period an LR server Sn can provide
service to flow i, within aggregated flow ISn

in , as the following. WSn
i (T0, t) ≥

max
(
0, ρi(t − T0 − (σSn

I,in − σSn
i )/ρSn

I,in − ΘSn
I,in)

)
, where T0 is a starting time of

flow i busy period.

Proof. The proof takes the same steps with the proof of lemma 2. Since an
aggregated flow is queued and scheduled as if they were in a FIFO server with
some latency, lemma 2 can be considered as a special case of this lemma with
the latency Li/r and the allocated rate r. We omit the details. ��

The following theorem is a direct consequence from the definition of LR servers
and lemma 3.

Theorem 1. An LR server with an aggregated flow, under condition that all
the input flows within the aggregated flow are leaky bucket constrained, is an LR
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server for individual flows with latency given as the following. ΘS
i = (σS

I,in −
σS

i )/ρS
I,in + ΘS

I,in, where IS
in is the aggregated flow.

From lemma 1 and theorem 1, the following corollary can be claimed, so that
the maximum burst size at each server through the network can be calculated
recursively.

Corollary 1. The output traffic of flow i within an aggregated flow IS
out from

an LR server S conforms to leaky bucket model with parameters (σS
i + ρiΘ

S
i ,

ρi), where σS
i is the maximum burst size of flow i into the server S.

The maximum end-to-end delay of a network of LR servers with aggregated
flows can be obtained by the following sets of equations:

Di ≤ σi − Li

ρi
+

N∑

n=1

ΘSn
i ,

ΘSn
i =

σSn
I,in − σSn

i

ρSn
I,in

+ ΘSn
I,in, σSn

I,in =
∑

k∈ISn
in

σSn
k ,

σSn+1
i = σSn

i + ρiΘ
Sn
i , for n ≥ 1, and σS1

i = σi. (4)

4 Flow Aggregation with Non-work Conserving DRR
Servers

The problem of aggregation and deaggregation is that the burst size linearly
increases as hops are passed by, so that the delay bound in a node increases
linearly and therefore the end-to-end delay increases quadratically. DRR with a
special modification, however, can smooths its output flow so that the burst size
remains constant. Let us observe the following.

Lemma 4. Assume that flow i is continuously backlogged during (α, β]. Let k be
the number of DRR turns given to i during the interval (α, β]. The service given
by a DRR server to i during this period, Wi(α, β), is bounded as kφi − δk

i ≤
Wi(α, β) ≤ kφi + δ0

i , where δk
i is the deficit value of i, at the end of the kth

round, counting from the first round within (α, β].

Proof. See the proof of lemma 2 of [2]. ��

Lemma 5. For any interval (α, β], within a backlogged period, the service given
by a DRR server to flow i is bounded as Wi(α, β) ≤ ρi

F
f (β − α) + 2φi, where

f is the sum of quantum values of flows that are continuously backlogged during
this interval.

Proof. Let tk indicate the time that the kth round finishes in the DRR server,
counting from time α. Further let t0 = α. For each interval of time (tk−1, tk],
tk − tk−1 ≥ 1

r

∑
j∈B

(
φj + δk−1

j − δk
j

)
, where B is defined to be the set of
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flows that are continuously backlogged during this interval. By summing over k,
tk − t0 ≥ f

r k+ 1
r

∑
j∈B

(
δ0
j − δk

j

)
≥ f

r (k −1), since
∑

j∈B δ0
j ≥ 0 and

∑
j∈B δk

j ≤
f . Equivalently k ≤ r

f (tk − t0) + 1. From lemma 4, for the interval [t0, tk),
Wi(t0, tk) ≤ kφi+δ0

i
r
f (tk−t0)φi+φi+δ0

i ≤ ρi
F
f (tk−t0)+2φi, since ρi/r = φi/F .

We conclude that, for an arbitrary time β, between tk and tk+1, the lemma holds
because Wi(α, β) = Wi(α, tk) ≤ ρi

F
f (tk − α) + 2φi ≤ ρi

F
f (β − α) + 2φi. ��

The service upper bound we calculated is in fact as tight as possible. It is suffi-
cient to show an example that satisfies the above relation. Suppose a tiny packet
of size Δφi is served within a round started with zero deficit and therefore the
deficit value after the round is φi − Δφi. During the next round, two packets
with sizes φi −Δφi and φi may be served. If Δφi � φi then we can argue 2φi is
immediately served. Afterwards, the service is offered with constant rate ρiF/f .
Therefore the upper bound is tight, and this value is indeed the latency of the
LR server.

Corollary 2. During an interval (α, β], where all the flows in the server are
continuously backlogged, the service upper bound is given as Wi(α, β) ≤ ρi(β −
α) + 2φi.

We suggest a variation of DRR scheduling algorithm that we call the Smoothing
DRR, which is again an LR server. By using this scheduler, all the queues
are virtually always backlogged, so that corollary 2 is applicable for network
analysis. In this case the output flows from all the Smoothing DRR server Sn
conform to leaky bucket model with parameters

(
min(2φi, σ

Sn
i ), ρi

)
. The basic

idea behind this algorithm is that whenever the queue is empty, generate a null
packet with the amount of quantum size plus deficit value, and then serve it. If
a packet belongs to the queue arrives during the service of a null packet, then
stop serving the null packet, decrement the deficit as much as the served amount
from the null packet, and turn to the normal operation mode. The important
part is that the transmitter ignores any null packet, so that no real transmission
occurs for a null packet. The detailed algorithm is described in algorithm 1..

5 Numerical Results

We focus on a residential network environment, where the maximum number of
hops and the number of flows are confined and predictable. Moreover in such
networks the demand for real-time service is strong, especially for video and
high quality audio applications. IEEE 802.1 Audio/Video Bridging Task Group
[12] defines a bound for the end-to-end delay to be 2ms in a network of 7 hops
for stringent audio and video applications [13]. We assume the 100Mbps Fast
Ethernet links are used across the network.

If we are to transmit the MPEG-2 Transport Streams (TS) data whose lengths
are fixed at 188 bytes with 12 bytes RTP fixed header, 4 bytes RTP video-specific
header, 8 bytes UDP header, 20 bytes IP header and finally 26 bytes Ethernet
header and trailer including preamble, then the maximum packet length in this
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Algorithm 1. Smoothing DRR
Ensure: D is deficit value and Q is quantum size
Require: Upon a queue’s turn starts

D ⇐ D + Q
if there is no packet queued then

3: enqueue a null packet with size D.
end if
while packet(s) is queued do

6: if D is greater than or equal to the head packet size then
start serving the head packet
if the null packet is being served and a new packet for the queue has arrived
during the service then

9: stop immediately the service of the null packet and drop the null packet
D ⇐ (D− the number of bits that have been served from the null packet)
Go to 6

12: else
complete the packet’s service
D ⇐ (D− the size of the packet just served)

15: end if
end if

end while
18: Release the server from the queue.

case becomes 258 bytes. Considering the extended headers fields and Ethernet
inter-frame gap, we set our maximum packet length at 300 bytes.

Consider a network of arbitrary topology whose maximum radius is seven
hops. We refer a hop by a switch, therefore a server. Consider the longest path
where seven DRR servers are in series. In this longest path, at each server there
are nine flows with the average rate of 10Mbps, including the flow under obser-
vation, i. The maximum burst size of i at the entrance of the network is 300
bytes. Note that the other flows do not have any burst size constraints. The
flows other than i at different servers may or may not be the same ones. In this
scenario the latencies at all the servers are identical and is 0.528ms, as given
in equation (2). The end-to-end delay with seven servers is again obtained from
equation (1) and is 3.696ms.

Now consider a network with an aggregated flow which comprises flow 1 and 2.
This aggregated flow traverses a network of LR servers in series. In every server
there are seven others flows, demanding 10Mbps per each flow. Again the flows 1
and 2 are constrained with leaky buckets at the entrance of the network with the
parameters (300 bytes, 10Mbps). We find the delay bound of this network, by
lemma 1, to be 4.632ms. Next we consider the case where the aggregated flow
in the previous scenario is deaggregated into flows 1 and 2 at the input port of
switch 7 to different output ports thus different servers, and each is confronted
with other eight flows there. This scenario is depicted in figure 2. The delay
bound in this case is 8.040ms. We then repeat with the scenarios where four
among nine flows are aggregated instead of just two. Finally we apply the Instant
Service policy to the Smoothing DRR.
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Fig. 2. Seven DRR servers in series. Flows 1 and 2 are aggregated at switch 1 and
deaggregated at switch 7: Delay bound is 8.040ms.

Table 1. Summary of performance comparison

We compare a number of scenarios with various schemes of flow aggregations
and examine their delay performances. Table 1 summarizes the results. IntServ
successfully protects the flows from each other’s burst size variations, therefore is
considered to have the predictable and robust performance. When there is only
an aggregation at the entrance of the network, the performance degradation
is not significant. In the case with aggregation of four flows, it even reduces
the delay bound. When a deaggregation takes place in the middle of the path,
however, the delay bound is large due to the maximum burst size of the flow
under observation that have increased to a significant level while traveling the
path. The aggregation in the middle of a network will also lengthen the delay
bound with the same reason. This degradation is somewhat mitigated by S-DRR.

6 Conclusion

We have analyzed the servers with aggregated flows and obtained an iterative
method to calculate end-to-end delay bounds. The delay bounds in such net-
works depend on many parameters, including burst size of other flows within the
aggregate and the number of aggregation/deaggregation. In networks with tradi-
tional work-conserving servers the delay bound depends especially on how far the



220 H. Jeong, K.Y. Bae, and J. Joung

aggregation or deaggregation take places from the entrance of the network, since
the farther the aggregation point the larger the maximum burst size, which can
be interpreted as the degree of uncertainty. We suggested a simple DRR-based
scheduling algorithm that is without the characteristics of linearly incrementing
burst size. We studied the performance of this server, the Smoothing DRR, and
have found that it is quite satisfactory. among different QoS architectures and
server choices.
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Abstract. The Majority game is a two player game with a questioner
Q and an answerer A. The answerer holds n elements, each of which
can be labeled as 0 or 1. The questioner can ask questions comparing
whether two elements have the same or different label. The goal for the
questioner is to ask as few questions as possible to be able to identify a
single element which has a majority label, or in the case of a tie claim
there is none. We denote the minimum number of questions Q needs
to make, regardless of A’s answers, as q∗. In this paper we consider a
variation of the Majority game where A is allowed to lie up to t times,
i.e., Q needs to find an error-tolerant strategy. In this paper we will give
upper and lower bounds for q∗ for an adaptive game (where questions are
processed one at a time), and will find q∗ for an oblivious game (where
questions are asked in one batch).

1 Introduction

The well-studied Majority game consists of two players: a questioner Q and an
answerer A. Initially A holds a set of n elements, each of which will have a
binary label (e.g., 0 or 1), and Q asks questions as to whether two elements have
the same or different labelling. In the game, Q’s goal is to identify one element
of the majority label (or in the case of a tie, claim that there is none), while
A’s goal is to block Q from identifying such an element. If after no more than q
questions Q can identify a majority element then Q wins, otherwise A wins. We
say Q has a winning strategy of length q if Q can always win the game with at
most q questions, regardless of what A answers. The goal is to design strategies
for Q with minimal q, denoted by q∗.

1.1 History

The earliest variant of the Majority problem was originally proposed by Moore
in the context of fault-tolerant system design in 1981 [11]. A number of different
variants were subsequently proposed and analyzed. This problem resurfaced after
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about twenty years in a military application where communication needs to be
minimized to locate one sensor that has not been corrupted among a group of
sensors [6].

There have been several variations of the majority game studied in past liter-
ature. Variations have included examining different k (the number of permissible
labels); considering adaptive or oblivious versions of the game (in an adaptive
game, Q learns the answer to each question before asking the next question,
while in an oblivious game, Q asks all questions in one batch before getting any
answers from A); and whether or not a majority label is known to exist or not.
(See [1,3,6,7,9,14,17].)

In the adaptive case with 2 labels, Saks and Werman [14] were the first to
prove a tight bound of the minimum length of a winning strategy for Q to be
n − μ2(n), where μ2(n) is the number of 1s in n’s binary expansion. Different
proofs for the same result were subsequently given in [3] and [17]. When k is
unknown, a tight bound of �3n/2� − 2 was given in [9]. The average case of the
same setting was analyzed in [4]. Similar bounds were proven for randomized
algorithms [10].

In the oblivious case, when k is unknown, the optimal winning strategy for Q
is much harder to design or analyze. If the existence of a majority label is not
known a priori, Q needs Ω(n2) many questions [15]. However, if a majority label
is known to exist, by using a special type of graph, called Ramanujan graph,
there is a constructive strategy for Q that uses no more than (1 + o(1))27n
queries. The constant 27 can be further improved to 19.5 if only existence of
such a strategy is desired [7].

1.2 Error Tolerance

In past literature, A is always a malevolent but truthful adversary in the sense
that as long as their current answer is consistent with previously given answers,
they will want to win the game. However, an error-tolerant feature is desired
when the answers to the queries in the application may be faulty due to com-
munication errors. In this paper we address this issue by putting the Majority
game in a broader context of fault-tolerant communication, namely, searching
games with errors. Generally, these games are more difficult to analyze, but have
a much wider range of applications compared to perfect information two per-
son games. One such famous game is the Rényi-Ulam liar game [13,16]. For a
comprehensive overview of this topic, we refer the reader to a recent survey [12].

In this paper we consider bounded error tolerance for the Majority game,
where A is allowed to lie up to a fixed number t times. More precisely, this
means that after Q specifies an element as being in the majority or state there is
none, A has the freedom to flip up to t answers of the previously asked queries
and reveal a labelling that is consistent with this modified set of answers. Now
that A can lie how much will this handicap Q? What is the new minimal q∗ and
what strategy should Q adopt to achieve this bound?

In this paper we will begin to answer some of these questions for the Majority
game with binary labels. We will give upper and lower bounds for q∗ by producing
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strategies for Q and A in various versions of the game. For the sake of exposition,
some of the justification for these strategies will be omitted from this paper and
will appear in a longer version of this paper. We summarize our results in the
table below, where t is the number of lies and n is the number of objects.

Game n is odd n is even
Adaptive

t = 1 n ≤ q∗ ≤ n + 1 n + 1 ≤ q∗ ≤ n + 2

Adaptive
t > 1 � t+3

4 n − t+1
4 � ≤ q∗ ≤

(
t+1
2 + o(1)

)
n t+1

2 n ≤ q∗ ≤
(

t+1
2 + o(1)

)
n

Oblivious
t ≥ 1 q∗ = �(t + 1

2 )n�

The upper bound in the adaptive case for t > 1 holds only when t = o(n1/2).
A more precise statement of the upper bound is given by Theorem 4. For the
case when t is large in comparison to n then a better upper bound might be
given by the oblivious upper bound, this of course is dependent on the size of t.

Also note that there is a difference between the case when n is odd and n
is even. This is due to the fact that when n is odd there must be a majority
element which gives additional information Q can use in forming a strategy.

2 Adaptive Setting

We can adapt the known strategy for the game with no lies to give a simple
upper bound for q∗. Recall that for the majority game of binary labels with no
lies the optimal winning strategy takes (n − μ2(n)) queries [14].

Theorem 1. In the adaptive Majority game on n elements with binary labels
and at most t lies,

q∗ ≤ (t + 1)
(
n − μ2(n)

)
+ t

where μ2(n) is the number of 1s in n’s binary expansion.

Proof. Let Q ask the same queries as in the best strategy to play the Majority
game with no lies, only that each query is repeated until (t+1) answers agree (at
which point we know the relationship between the two elements) before going
to the next query. Because A is not allowed to lie more than t times, the total
number of queries Q needs to ask is (t + 1)

(
n − μ2(n)

)
plus at most t. ��

This simple bound for q∗ can be improved by Q using error detection and cor-
rection from the answers of A.

2.1 Preliminaries

To keep track of the game as it progresses, we use an auxiliary (multi-)graph.
The n objects are the vertices and edges correspond to comparisons between
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elements. (We will allow queries to be repeated and any multiple queries are
represented by multi-edges.) As the game progresses Q will give A an edge and
ask A to color it blue if the two elements have the same label and red it the two
elements have different labels.

One of the most important tools used in the formation of a strategy is to use
the auxiliary graph to detect lies. For instance, note that if A were truthful then
every cycle would always have an even number of red edges. But when A can
lie this no longer needs to be the case and we have the following observation.

Observation 1. A cycle can have an odd number of red edges if and only if an
odd number of edges in the cycles correspond to lies.

This follows by noting that the number of red edges corresponds to the number
of times along the cycle that we switch labels. Initially if there were no lies we
would have to switch an even number of times (i.e., we must return to the same
label we started with). Now for every lie we either increase or decrease by 1 the
number of switches made.

From the observation any cycle which contains an odd number of red edges
must contain a lie, we will refer to such cycles as invalid, otherwise we say that
the cycle is valid. It is important to notice though that just because a cycle is
valid it does not imply that there are no lies, only that there are an even number
of them.

2.2 Majority Game with at Most t = 1 Lie

Theorem 1 gives an upper bound of
(
2(n−μ2(n))+1

)
for Q’s adaptive strategy

when A is allowed to lie once. This bound can be improved by using validity
checking of the auxiliary graph. (For the case involving one lie we have that a
cycle is valid if and only if it has no lies, in general this will not hold.)

Theorem 2. In the adaptive Majority game on n elements with binary labels
and at most 1 lie

q∗ ≤
{

n + 1 if n is odd,
n + 2 if n is even.

Proof. We give a two-stage strategy for Q satisfying the bounds.
Stage 1: In the first stage Q starts by growing long blue paths by the following
rule: connect the ends of two blue paths which have an equal number of vertices.
This continues until either there are no two paths with the same number of
vertices or we get a red edge.

In the first case Q takes the longest blue path and closes it up by a single
question, if the cycle is blue then Q identifies any element on the cycle as a
majority element (i.e., in such a case it is easy to see that the cycle contains
more than half of the elements and all of them must have the same label),
otherwise if the edge is red (i.e., the cycle is invalid so contains a lie) Q goes to
the second stage.

In the second case there is a path with one single red edge in the middle. Q
then asks a single question to close it up to form a cycle. If the new edge is red,



How to Play the Majority Game with Liars 225

then the coloring is valid and so the cycle has an equal number of each label,
Q then removes this component from the graph and continues as before. If the
new edge is blue (i.e., the cycle is invalid so contains a lie) Q goes to the second
stage.
Stage 2: Starting stage 2 we already know that A has used their lie and so
all subsequent answers must be true. We initially have one cycle with a single
red edge (denoted by {u, v}) and possibly several blue paths. The first step in
this stage is to connect one vertex from each blue path to u. The graph now
consists of a cycle with a tree attached to u. At this point Q has asked exactly
n questions.

Because the lie lies in the cycle, all edges involved in the tree reflect truthful
responses. In particular, Q can determine how many of the vertices of the cycle
must have the same label as u in order for u to be the majority element, denote
this number by k. Starting at u and going in the opposite direction of v, Q
counts out k vertices. Denote the kth vertex by w. (If the cycle contains fewer
than k vertices then u is in the minority and it will be easy to identify a majority
element in the tree. Similarly, if k ≤ 0 then u has a majority label.)

Q now queries the edge {u, w}. If the edge is blue then all the vertices between
u and w have the needed label and we can conclude that u is a majority element.
On the other hand if the edge is red then there is a lie somewhere between u
and w and so u cannot be a majority element. In the case when n is even we
then only need to compare u with the vertex that precedes w to test if there is
a tie. If the edge is blue then there is a tie, while if the edge is red then w is a
majority element.

The result now follows by counting the number of queries used. ��

To find a lower bound for q∗ we need to give a strategy for A. Since A can adopt
the same strategy as in the game with no lies we have that q∗ ≥ n − μ2(n).
However, A can do better as shown in the next theorem.

Theorem 3. In the adaptive Majority game on n elements with binary labels
and at most 1 lie

q∗ ≥
{

n if n is odd,
n + 1 if n is even.

The case for n is odd will follow from Theorem 5 with t = 1. The proof for n
is even will be found in the longer form of this paper.

2.3 Majority Game with at Most t ≥ 2 Lies

We now consider the game where A is allowed to lie up to t ≥ 2 times. We first
start by establishing an upper bound.

Theorem 4. In the adaptive Majority game on n elements with binary labels
and at most t ≥ 2 lies,

q∗ ≤ t + 1
2

n + 6t2 + 2t + 3 log n.
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Proof. We give a sketch of the strategy here. More details and justification can
be found in the longer form of this paper. The strategy for Q will be to use two
rounds. The first round will be “oblivious” in that Q will always ask the same
set of questions (this round will use (t + 1)n/2 questions). In the second round
Q then uses the answers from the first round to find and correct all lies.

We first consider the case n > 2t with n even.
In the first stage Q forms an n-cycle with the n vertices and asks �t/2	

questions on each edge of the cycle. Q then makes

t + 1 − 2
⌊

t

2

⌋

=
{

1 if t is even,
2 if t is odd,

queries between opposite vertices of the cycles (we will refer to these queries as
spokes). An example is shown in Figure 1.

�t/2�

�t/2�

�t/2�
�t/2�

�t/2�

�t/2�

�t/2�
�t/2�

Fig. 1. “Oblivious” first round queries

u1

u2

v1

v2

u′
1

u′
2

v′1

v′2

Fig. 2. Looking for lies in the spokes

This strategy has the following useful property. If A has lied then there is
either an invalid 2-cycle either in the spokes or along the exterior; or there is
an invalid 4-cycle of the form v1v

′
1v

′
2v2 (see Figure 2); or there is an invalid n/2

cycle of the form v1v
′
1v

′
2 . . . v1 (i.e., lying along half of the outer cycle plus a

spoke).
We can quickly find and remove all errors from invalid 2-cycles and 4-cycles.

Namely, for each such cycle we make 2t queries on each of 3 edges and take the
majority answer on each edge, if we have not yet found the lie from this then the
remaining edge is a lie and we then can correct. Thus we would need at most
6t2 queries to correct these lies.

If after correcting these queries there is still an invalid n/2 cycle then it must
be the case that there are two opposite intervals “saturated” with lies (i.e., all
queries between u1u2 and u′

1u
′
2 in Figure 2 are lies). In particular, there can

only be at most one lie left. We now lift up the n/2 cycle (which will have only
one lie) and locate the lie by using a splitting technique. Namely we join two
opposite pairs of vertices with three edges and take the majority answer and use
this to split the cycle into two smaller cycles, one of which will be invalid (and
which contains the lie of the n/2 cycle). We then continue this process of cutting
in half each time until we have located the lie. In particular, this technique will
locate the lie in 3 logn steps.
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Q is now finished because they can detect and correct lies given by A and
relate all elements together. In particular, Q has used at most (t+1)n/2+6t2+
3 logn queries to accomplish this.

For the case n odd Q sets aside a single element and runs the procedure and
then at the end connects the element back into the graph by making at most
2t + 1 queries relating the odd element out with some arbitrary element.

Finally for the case n ≤ 2t we can simply build a tree where we keep asking
questions on each edge until we get t + 1 responses which agree. In particular,
we would need at most 2t2 + t queries in such a case.

Putting it all together gives the desired result. ��

To establish the lower bound, we will make use of the following general observa-
tion.

Observation 2. If the coloring is valid (i.e., no lies are detected), then Q will
not be able to determine the correct relationship for an element which is involved
in no more than t queries.

This observation follows by noting that since the coloring is valid and A is
allowed to change the color of up to t edges, then A can change all the queries
involved with a vertex of low degree (i.e., no more than t) and still produce an
admissible labelling.

Theorem 5. In the adaptive majority game on n elements with binary labels
and at most t ≥ 1 lies,

q∗ ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t + 1
2

n if n is even,

⌈
t + 3

4
n − t + 1

4

⌉

if n is odd.

Proof. For the case when n is even, A can use the following strategy: Initially
assign half of the elements with label 0 and the other half with label 1 and
answer all of the questions truthfully. If Q makes fewer than ( t+1

2 )n queries,
then by degree considerations there is a vertex with degree at most t. Based on
the above observation, Q will be unable to determine the correct relationship
of that vertex with the remaining elements and in particular will not be able to
distinguish between a tie and the existence of a majority element.

The case for n is odd will be found in the longer form of this paper. ��

3 Oblivious Setting

In the oblivious setting, Q has to specify all the edges in the auxiliary graph G
before A colors any of them. This implies that Q has to accomplish detection
and location of lies simultaneously. We have another important observation.
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Observation 3. In the Majority game of binary labels with at most t lies, if
an edge e is part of 2t cycles that pairwise edge-intersect only at e (though they
might share many vertices in common), then a lie is located at e if and only if
at least (t + 1) of these cycles are invalid.

This observation follows by noting that if an edge corresponds to a truthful
answer then there can be at most t of the 2t cycles intersecting at e which can
be invalid. On the other hand if the edge corresponded to a lie then at most
t − 1 of the 2t cycles intersecting at e can be valid, or equivalently, at least t + 1
invalid cycles.

Theorem 6. In the oblivious Majority game on n elements with binary labels
and at most t ≥ 1 lies,

q∗ =
⌈
(
t +

1
2
)
n

⌉

.

Proof. We first establish the upper bound. The observation above implies that if
we can construct an auxiliary graph for Q such that for any particular edge we
can find 2t cycles that are pairwise edge-joint only at that edge, we can locate
and thus correct all possible lies with no more queries needed.

We handle the base cases first. For n = 2, we use (2t + 1) edges for the same
query. For n = 3, the query graph is a triangle with one query asked t times and
the other two queries each asked (t + 1) times.

For even n ≥ 4, we construct a multigraph as shown in Figure 3 where all
edges in the outer cycle are multi-edges (repeated t times) and single edges (or
spokes) connect each pair of opposite vertices. The total number of edges is
therefore (t+ 1

2 )n. For odd n ≥ 3, first construct a graph as in the n+1 case and
then contract a set of edges on the outer cycle, an example is shown in Figure 4.
In this case it can be checked that there are �(t + 1

2 )n� edges in the graph.

t

t

t

t

t

t

t

t

Fig. 3. Oblivious graph, n even

t

t

t

t

t

tt

Fig. 4. Oblivious graph, n odd

For each spoke, we can find t cycles using one half of the outer cycle and
another t using the other half. For each outer edge e, first we can find (t−1) small
cycles by joining it with the other (t − 1) multiedges with the same endpoints,
then we use edges in the outer cycle to obtain another (t − 1) cycles. We need
two more cycles and these are constructed using the spokes and the remaining
unused edges of the outer cycle as shown in Figure 5. Because each edge lies in
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e e

Fig. 5. The remaining two cycles for a side edge e

at least 2t cycles pairwise edge-joint only at that edge, all lies can be located
and hence corrected. Establishing the upper bound.

For the lower bound, we again consider the degrees. If Q asks fewer than
�(t+ 1

2 )n� then since Q’s strategy is oblivious, A can examine the entire auxiliary
graph and find a vertex v with degree at most 2t. A can split the remaining
vertices into two sets U and V as equally as possible (i.e.,

∣
∣|U | − |V |

∣
∣ ≤ 1) with

label 0 and 1 respectively. For queries not involving v, A answers truthfully. For
queries involving v, A answers half of the queries as if v is labelled 0 and the
other half as if v is labelled 1. This is possible because A is allowed to lie up to t
times. Now Q cannot distinguish which half are lies and hence cannot determine
the label for v which is essential because the other vertices are in an (almost)
exact balance. This establishes the lower bound and concludes the proof. ��

4 Conclusion and Remarks

Motivated by the practical need of an error-tolerant feature, we have concen-
trated on optimizing Q’s strategy in the presence of lies (or errors) for binary
labels in the Majority game. We point out that when the number of lies is upper
bounded by a constant t, Q can still win the game with a linear (in n) number of
questions. Upper and lower bounds on the length of Q’s optimal strategy were
derived in both the adaptive setting and the oblivious setting.

Consideration of fault-tolerance may also be useful for the many other vari-
ants of the Majority game, such as when the number of different labels is more
than two. A natural generalization of the Majority game is the Plurality game
where Q wants to identify one element of the plurality label (most frequently oc-
curring), still using only pairwise equal/unequal label comparisons of elements.
Much attention has been given to designing adaptive strategies (deterministic
or randomized) for fixed or unknown k (see [2,5,8,10,15]). We remark here that
the same reasoning of Theorem 1 applies to existing bounds for all variants of
the Majority game (including the Plurality game) if the maximum number of
lies allowed t is fixed. The new upper bounds will only be at most worse by a
multiplicative constant (t + 1) and an additive constant t.

In this paper, we gave a complete picture for the oblivious setting in the
Majority game with a constant bounded number of lies. In the adaptive set-
ting, however, there are still various gaps between the upper and lower bounds
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obtained. Closing these gaps would be interesting to pursue. In the meantime,
other types of error-tolerance may also be considered, such as bounded error
fraction or random errors.
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Int. Közl. 6 (1961), 505–516.
14. M. Saks and M. Werman, “On computing majority by comparisons”, Combinator-

ica 11 (1991), 383–387.
15. N. Srivastava, and A. D. Taylor, “Tight bounds on plurality”, Information Process-

ing Letters 96 (2005), 93–95.
16. S. M. Ulam, Adventures of a mathematician, Charles Scribner’s Sons,

New York, 1976, xi+317pp.
17. G. Wiener, “Search for a majority element”, J. Statistical Planning and Inference

100 (2002), 313–318.



On Satisfiability Games and the Power of

Congestion Games

Vittorio Bilò
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Abstract. We introduce and study satisfiability games, a new class
of games that can be seen as the non-cooperative version of classical
maximum satisfiability problems. We give several results involving these
games and mainly focus on their expressiveness. In particular, we show
that there exists a strong correspondence between satisfiability games
and congestion games. As one of the consequences of our results, we
show that each game is isomorphic to a congestion game with player
specific payoffs. Thus, each other game can be defined as a particular
specialization of congestion games with player specific payoffs and this
paper can be considered as a first effort in outlining a classification of
non-cooperative games.

1 Introduction

The study of non-cooperative games is receiving more and more attention due
to its tight relationship with that of unregulated networks, such as the Internet.
Lots of results have been achieved in the last years about the hardness of com-
puting pure and/or mixed Nash equilibria and their relative price of anarchy for
several particular games, but, despite this effort, there is a certain lack of general
results. A classification of non-cooperative games is thus being hotly encouraged.
The main aspects that one may want to take into account when classifying games
are essentially three: their expressiveness (i.e., their capability to model several
non-cooperative scenarios), the complexity of computing their Nash equilibria,
and the quality of such equilibria (i.e., price of anarchy and price of stability).

Studying the expressiveness of a class of games and, in particular, its rela-
tionships with that of another class, requires the use of the notion of equiv-
alence among games. Comparing the computational complexity of computing
their Nash equilibria and their quality, instead, requires the use of the weaker
notion of reducibility among games, (see Subsection 1.1 for formal definitions).

In this paper we deal with the notion of expressiveness of games whose study,
however, can give us also some insights into the other two aspects. To this aim, we
introduce satisfiability games and show how they can be considered as the most
general class of non-cooperative games. The interesting point is that, despite
their power, satisfiability games have a very simple structure and thus can be
likely used to prove general results for other classes of games.

M.-Y. Kao and X.-Y. Li (Eds.): AAIM 2007, LNCS 4508, pp. 231–240, 2007.
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We embed our study on satisfiability games into a more complex and inter-
esting process of classification of non-cooperative games. In particular, we show
a strong relationship tying together satisfiability games and congestion games
as well as their generalization with player specific payoffs. It turns out that this
latter class can be elected as the representative class of all games because of
its generality and its well-known properties and characterization. Each of the
other games studied in the literature and each of the other ones that may be
introduced can be defined as a particular specialization of congestion games with
player specific payoffs, thus allowing the definition of a hierarchy of games and
making easier the achievement of general results.

1.1 Definitions

Given a set U , a sequence a = (u1, . . . , uk) of elements of U , an index i ∈
{1, . . . , k} and an element u ∈ U , we write (a−i, u) = (u1, . . . , ui−1, u, ui+1, . . . ,
uk) to denote the sequence obtained from a by replacing ui with u.

Strategic games. A strategic game G is a triple G = (P, Si∈P , ωi∈P ) where
P is a set of n players, Si is the set of strategies available to player i and
ωi : S1 × . . . × Sn �→ IR is his payoff function. We will assume throughout the
paper that ωi models a benefit for player i, thus each player aims to maximize
his payoff. Of course, for the case in which the payoffs are costs for the players
one can always be consistent with this definition by taking the negative of ωi for
each player i.
States and improving steps. The set S = S1 × . . . × Sn is called the set of
states or strategy profiles of G. Consider a state σ = (σ1, . . . , σn) ∈ S and a
strategy s ∈ Si. The action of changing his strategy from σi to s is called an
improving step performed by player i if ωi(σ−i, s) > ωi(σ).
Pure Nash equilibria. A state σ is a pure Nash equilibrium if no player
possesses an improving step, that is, ∀i ∈ P and ∀s ∈ Si it holds ωi(σ−i, s) ≤
ωi(σ).
Mixed strategies. A mixed strategy for player i is a probability distribution
Yi defined over the set Si of his pure strategies. Given a mixed strategy Yi

for player i, the support of Yi, denoted as support(Yi), is the set of strategies
s ∈ Si for which Yi(s) > 0. A mixed strategy Y = (Y1 . . . , Yn) is a sequence of
mixed strategies Yi for each player i ∈ P . The support of a mixed strategy Y
is defined as the set of states support(Y ) = support(Y1) × . . . × support(Yn).
The payoff of player i yielded by a mixed strategy Y is defined as ωi(Y ) =∑

σ∈support(Y )(ωi(σ) · ProbY (σ)), where ProbY (σ) =
∏n

i=1 Yi(σi).
Mixed Nash equilibria. A mixed strategy Y is a (mixed) Nash equilibrium if
∀i ∈ P and for any probability distribution Z defined over Si it holds ωi(Y−i, Z)
≤ ωi(Y ). A fully mixed Nash equilibrium Y is a mixed Nash equilibrium such
that support(Yi) = Si for each i ∈ P .
Price of anarchy and stability. One of the main concerns when dealing with
non-cooperative systems is to bound their inefficiencies due to the lack of coordi-
nation among the players. More formally, given a function γ : S �→ IR, called the
social function, let σ∗ be a state optimizing γ. On the other hand, given a mixed
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strategy Y , the social value of Y is defined as γ(Y ) =
∑

σ∈support(Y )(γ(σ) ·
ProbY (σ)). The price of anarchy ρ(G, γ) of game G for the social function γ

is defined as ρ(G, γ) = infY ∈NE(G)
γ(Y )
γ(σ∗) , while the price of stability α(G, γ) of

game G for the social function γ is defined as α(G, γ) = supY ∈NE(G)
γ(Y )
γ(σ∗) , where

NE(G) denotes the set of Nash equilibria of G.
Equivalence among games. Two games G = (P, Si∈P , ωi∈P ) and G′ =
(P, S′

i∈P , ω′
i∈P ) are equivalent if there exists a 1 − 1 mapping gi : Si �→ S′

i

such that ωi(σ) =def ωi(σ1, . . . , σn) = ω′
i(g1(σ1), . . . , gn(σn)) =def ω′

i(g(σ)) for
each player i.
Reduction among games. A reduction from game G = (P, Si∈P , ωi∈P ) to
game G′ = (P ′, S′

i∈P , ω′
i∈P ) is a function g : S �→ S′ such that a state σ is a

Nash equilibrium for G if and only if the state g(σ) is a Nash equilibrium for G′.
If g can be computed in polynomial time with respect to the dimensions of G,
the reduction is called polynomial time reduction between G and G′. Clearly the
equivalence between G and G′ implies a reduction from G to G′.
Congestion games. A congestion game is a 4-tuple (P, E, Si∈P , de∈E), where
P is the set of n players, E is a set of m resources, Si ⊆ 2|E| for each i ∈ P and
de : IN �→ IR for each e ∈ E. Strictly speaking each player in a congestion game
can choose among different subsets of resources, each resource e has an associated
delay function de returning the delay experienced by any player using e in terms
of the number of players using it. Once defined ne(σ) = |{i ∈ P : e ∈ σi}| as
the number of players using resource e in state σ, the payoff function of player
i is defined as ωi(σ) =

∑
e∈σi

de(ne(σ)). Congestion games were introduced by
Rosenthal [18] who proved that they always possess pure Nash equilibria by
defining the potential function ΦR(σ) =

∑
e∈E

∑ne(σ)
i=1 de(i). A classical social

function associated to congestion games is the sum of the delays experienced
on the resources, that is, γ(σ) =

∑
e∈E de(ne(σ)). The generalization in which

the delay functions can differ among the players, i.e., ωi(σ) =
∑

e∈σi
di

e(ne(σ)),
is called congestion games with player specific payoffs, while the restriction in
which each player can choose only one resource is called singleton congestion
games.
Potential games. These are essentially all games possessing a potential function
Φ : S �→ IR. The existence of a potential function implies not only that potential
games always admit pure Nash equilibria, but the stronger property that they
do converge to an equilibrium starting from any state in a finite number of
improving steps (finite improvement path (FIP) property). There are three types
of potential games:

1. Exact potential games, where ∀σ ∈ S and ∀s ∈ Si, it holds Φ(σ)−Φ(σ−i, s) =
ωi(σ) − ωi(σ−i, s).

2. Weighted potential games, where ∃β = (β1, . . . , βn) such that ∀σ ∈ S and
∀s ∈ Si, it holds Φ(σ) − Φ(σ−i, s) = βi(ωi(σ) − ωi(σ−i, s)).

3. General potential games, where ∀σ ∈ S and ∀s ∈ Si, it holds Φ(σ) −
Φ(σ−i, s) < 0 if ω(σ) − ω(σ−i, s) < 0.
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The class of potential games generalizes that of congestion games, since, as
shown by Monderer and Shapley [15], congestion games are equivalent to exact
potential games and vice versa.
Cut games. These games, also known as party affiliation games, have been first
introduced in [7,13] and then further studied in [12,4]. There is an undirected
graph G = (V, E) with edge weights d : E �→ IR. We assume here, for simplicity
of notation, that dij = 0 if (i, j) /∈ E. Any vertex in V is a player whose strategies
are in the set {1, −1}. Thus, a state of this game can be seen as a cut in G. The
payoff function is ωi(σ) =

∑
j:σj �=σi

dij , that is the contribution of player i in the
cut. The usual social function associated with this game is the total contribution
of the cut, that is, γ(σ) =

∑
(i,j)∈E:σi �=σj

dij .
Satisfiability games. Consider a pair (Xi∈P , C, ), where each player i owns a
set of 	i variables Xi, with the property that Xi ∩ Xj = ∅ when i �= j and⋃

i∈P Xi = X =def {x1, . . . , x�}, and C = {C1, . . . , Cm} is a set of m clauses
which can be any boolean formula defined over the literals yielded by all the
variables in X and their negations. Each clause Cj has a weight cj and consists
of mj literals. The set of strategies for each player i is equal to Si ⊆ {0, 1}�i.
Thus, a state of this game σ = (σ1, . . . , σn) can be seen as an assignment of
values to the variables in X and, in particular, we denote by σi(x) ∈ {0, 1} the
value assigned to variable x ∈ Xi by player i in state σ. We denote with C−

k

the set of clauses containing xk, with C+
k the set of clauses containing xk, and

with Ci =
⋃

xk∈Xi
(C−

k ∪ C+
k ) the set of clauses containing at least one of the

literals induced by Xi. Let Cj(σ) be the result of the evaluation of Cj under
state σ, the payoff function of player i is ωi(σ) =

∑
Cj∈Ci:Cj(σ)=1 cj . The social

function is γ(σ) =
∑

Cj∈C:Cj(σ)=1 cj . Throughout the paper we will deal with
CSG and DSG, that is, games in which each clause is in disjunctive normal form
and conjunctive normal form, respectively. Associating with each clause Cj an
n-tuple of weights (c1

j , . . . , c
n
j ), one for each player, we obtain satisfiability games

with player specific payoffs, while defining Si = {0, 1}�i instead of Si ⊆ {0, 1}�i,
we obtain unconstrained satisfiability games. When 	i = 1 for all i ∈ P , we have
singleton satisfiability games. An interesting case is when Si contains only the
	i strategies in which player i is allowed to set to 1 one and only one of his
variables. We call this special case restricted satisfiability games.

1.2 Related Works

Non-cooperative games and their Nash equilibria [16] have been studied since
1950 before the affirmation of the Internet gave them new life and favored the in-
terest of computer science researchers. Congestion games were defined by Rosen-
thal [18] who introduced the idea of potential functions to show that these games
always possess pure Nash equilibria. This idea was exploited some years later by
Monderer and Shapley [15] who defined the class of potential games and proved
that the class of congestion games and that of exact potential games coincide.
Singleton congestion games with player specific payoffs were studied by Milch-
taich [11] who proved that they no longer admit a potential function, but still
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possess pure Nash equilibria in the case in which the delay functions associated
with each resource is decreasing for each player.

The FIP property of potential games clearly yields a naive algorithm for
computing pure Nash equilibria, unfortunately its complexity can be exponential
in the dimensions of the game. In fact, repeatedly performing improving steps
can be seen as an application of the local search technique in several games,
PLS-completeness of the computation of pure Nash equilibria for congestion
games was proved in [7]. The problem of computing Nash equilibria is a very
interesting algorithmic issue. The general case in which n ≥ 3 has been proved
to be PPAD-complete [5,6] by exploiting the first polynomial time reductions
among games known in the literature and PPAD-completeness of the two player
case was recently shown in [2].

The idea of comparing the optimal performances of an unregulated system
with those achieved by a Nash equilibrium dates back to the works of Korilis
and Lazar [8], La and Anantharam [10], and Shenker [19]. However, it has been
with the paper by Koutsoupias and Papadimitriou [9] that the notion of price of
anarchy, as a worst case measure, took its form. The notion of price of stability
has been later introduced in [1]. Since then, several papers have studied the price
of anarchy and/or stability of different non-cooperative games.

1.3 Our Results

We first address the study of satisfiability games and show that they are conges-
tion games, thus possessing pure Nash equilibria and the FIP property. We also
show that CSG with player specific payoffs are instances of congestion games
with player specific payoffs. Moreover, we prove that the problem of computing
a fully mixed Nash equilibrium either for singleton and restricted CSG and DSG
with player specific payoffs can be solved in polynomial time for the case in
which each clause has at most two literals.

We then study separately the two classes of games. For CSG we prove that
each game has an equivalent restricted CSG with player specific payoffs. As a
consequence, we have that congestion games with player specific payoffs can be
seen as the most general class of games. A similar result has been obtained by
Monderer [14] through the definition of multipotential games. In particular, this
means that any extension to a congestion game with player specific payoffs gives
rise to a congestion game with player specific payoffs. Moreover, we show that
each congestion game has an equivalent CSG, thus strengthening the equivalence
between CSG and congestion games.

With respect to DSG, we first show that each cut game has an equivalent
singleton DSG in which all clauses have exactly two literals. This gives evidence
that fully mixed Nash equilibria can be computed in polynomial time for cut
games. Then, we provide the characterization of the price of anarchy of uncon-
strained DSG by showing that it is exactly 1/2 for both pure and mixed Nash
equilibria. This generalizes the results known for cut games since singleton DSG
are clearly also unconstrained and the equivalence among the two games holds
also for their social functions.
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Finally, as an application of our results, we define an extension of congestion
games that we call congestion games with free riders and prove that they are
still congestion games.

1.4 Paper Organization

In the next section we present general results, that is, results holding for all
satisfiability games, or holding for both CSG and DSG. In Sections 3 and 4 we
address CSG and DSG respectively, while in Section 5 we present an application
of our results given by the definition of congestion games with free riders. Finally,
in the last section we provide a final discussion of our achievements and open
problems.

2 General Results

We start with a preliminary result showing that satisfiability games are instances
of congestion games, thus possessing pure Nash equilibria and the FIP property.

Theorem 1. Each satisfiability game is a congestion game.

As a corollary we obtain the following results.

Corollary 1. The price of stability of satisfiability games is 1 for both pure and
mixed Nash equilibria.

Corollary 2. The problem of computing a Nash equilibrium for satisfiability
games is in PLS for both pure and mixed strategies.

We now show how the computation of a fully mixed Nash equilibrium can be
performed in polynomial time for either singleton and restricted CSG and DSG
with player specific payoffs in which the number of literals occurring in each
clause is at most two.

Theorem 2. The problem of computing a fully mixed Nash equilibrium for ei-
ther singleton and restricted CSG and DSG with player specific payoffs in which
each clause has at most two literals is solvable in polynomial time.

3 Conjunctive Satisfiability Games

In this section we focus on CSG by analyzing, in particular, their generality in
the sense that they can be used to effectively represent all other non-cooperative
games. This result is quite intuitive since CSG can be thought as an alternative
way to represent non-cooperative games in standard form.

Theorem 3. Each non-cooperative game admits an equivalent restricted CSG
with player specific payoffs whose clauses have exactly n literals.
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Since we have shown in the previous section that satisfiability games with player
specific payoffs are also congestion games with player specific payoffs, we get the
following interesting result.

Corollary 3. The following three classes of games coincide:

1. Non-cooperative games,
2. (Restricted) CSG with player specific payoffs,
3. Congestion games with player specific payoffs.

Thus, both the class of congestion games with player specific payoffs and that of
CSG with player specific payoffs can be considered as a candidate to represent
the class of all possible non-cooperative games. We now show that congestion
games and CSG are further on tied, since their equivalence persists even when
we do not allow player specific payoffs.

Theorem 4. Each congestion game admits an equivalent CSG.

Thus, we obtain the following corollaries.

Corollary 4. The class of CSG coincides with that of congestion games.

Corollary 5. The problem of computing a pure Nash equilibrium for CSG is
PLS-complete.

Corollary 6. There exists a polynomial time reduction from congestion games
in which the maximum number of players sharing the same resource is constant
to CSG.

Before concluding the section, we observe that even for singleton CSG there
may exist Nash equilibria σ yielding an unbounded price of anarchy for the
social function γ.

Proposition 1. The price of anarchy of singleton congestion games can be un-
bounded for the social function γ.

A similar result was proved in [3] for the social functions γ1(σ) =
∑

i∈P ωi(σ)
and γ2(σ) = maxi∈P ωi(σ).

4 Disjunctive Satisfiability Games

We first show that the class of DSG includes that of cut games.

Theorem 5. Each cut game admits an equivalent singleton DSG.

Since the reduction of cut games to DSG gives life to clauses with exactly two
literals, it follows that the problem of computing fully mixed Nash equilibria for
cut games is solvable in polynomial time.

It is known that the price of anarchy for the cut game with respect to the
social function γ is 1

2 for pure Nash equilibria, since a pure Nash equilibrium can
be seen as a solution of the local search algorithm for the MAX-CUT problem.
We generalize such a result to DSG by obtaining the same bound on the function
γ with respect to either pure and mixed Nash equilibria.
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Theorem 6. For any unconstrained DSG G it holds ρ(G, γ) ≥ 1
2 .

We have shown a lower bound on the price of anarchy of mixed Nash equilibria
for satisfiability games with respect to the social function γ. This clearly implies
a lower bound also for pure Nash equilibria. On the other side, an upper bound
on the price of anarchy of pure Nash equilibria implies an upper bound also for
mixed ones. Thus, in order to show that the analysis carried out in the previous
theorem is tight, we present a family of instances of singleton DSG whose price
of anarchy is at most 1

2 for the social function γ with respect to pure Nash
equilibria.

Example 1. Given the set of variables X = {x1, . . . , xn}, construct C as follows.
There are n singleton clauses C1i = xi, for 1 ≤ i ≤ n, and n clauses involving
all the n variables Cni = (x1, . . . , xi, . . . , xn), for 1 ≤ i ≤ n, in which only the
ith variable appears negated. All clauses have the same weight that we assume
to be equal to 1. The set Xi is equal to {xi}. The state σ∗ in which σ∗

i = 1 for
every 1 ≤ i ≤ n, satisfies all clauses; thus γ(σ∗) = 2n. The state σ in which
σi = 0 for every 1 ≤ i ≤ n, satisfies only the n clauses involving all variables;
thus γ(σ) = n. State σ can be easily verified to be a pure Nash equilibrium. In
fact, for every player i it holds ωi(σ) = n. Now, if player i changes his strategy
from 0 to 1, he looses the contribution of clause Cni and gain that of clause C1i.
Since the payoff stays the same for every player, σ is a pure Nash equilibrium
and γ(σ)

γ(σ∗) = 1
2 .

From the above example and the result of Theorem 6, we obtain the following
characterization of the price of anarchy of unconstrained DSG.

Theorem 7. For unconstrained DSG it holds ρ(G, γ) = 1
2 even for unweighted

clauses for both pure and mixed Nash equilibria.

5 Congestion Games with Free Riders

We have proved that each game is a congestion game with player specific pay-
offs. This task was achieved by showing the equivalence between the class of
non-cooperative games and that of CSG with player specific payoffs and the
equivalence between the latter class with that of congestion games with player
specific payoffs. We can prove that each DSG with player specific payoffs is in-
deed a congestion game with player specific payoffs in an alternative way by
introducing the definition of a generalized model for congestion games which we
call congestion games with free riders.

In this kind of games, resources can have two types of users. The first class of
users includes players using resource e as in the classic definition of congestion
games and achieving a contribution equal to de(ne(·)). The second class of users
includes players, that we call free riders, which, at a first instance, only declare
that they are willing to use resource e, but become real users (thus contributing
in the definition of ne(·) and receiving the value de(ne(·)) in their payoffs) only
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if the number of players using e (that is without considering the contribution of
free riders) reaches a particular threshold te.

More formally, a congestion game with free riders (P, E, Si∈P , de∈E , te∈E)
is defined as follows. (P, E, Si∈P , de∈E) is a traditional congestion game. But
now each strategy si = (e′si

, e′′si
) ∈ Si contains two sets of resources: the ones

(e′si
) properly used by player i and the ones (e′′si

) for which i is a free rider.
Finally, for each e ∈ E, te is the threshold of e. Given a state σ, we define
n′

e(σ) = |{i ∈ P |e ∈ e′σi
}| as the number of players using resource e without

counting free riders and

ne(σ) =
{

|{i ∈ P |e ∈ σi}| if n′
e(σ) ≥ te,

n′
e(σ) otherwise.

The payoff obtained by player i is now defined as ωi(σ) =
∑

e∈e′
σi

de(ne(σ))+
∑

e∈e′′
σi

:n′
e(σ)≥te

de(ne(σ)). It is easy to see that DSG are special instances of
congestion games with free riders. It suffices setting E = C. For each player i the
mapping function becomes gi(σi) = (

⋃
Cj∈Ci:Cj(σi)=1 ej,

⋃
Cj∈Ci:Cj(σi)=0 ej). For

each e ∈ E, we set te = 1, de(0) = 0 and de(k) = ce for any k ≥ 1.
We now show that the class of congestion games and that of congestion games

with free riders coincide.

Theorem 8. For each congestion game with free riders there is an equivalent
congestion game and viceversa.

Thus, we have that congestion games with free riders are congestion games.
This means that congestion games with free riders and player specific payoffs
are congestion games with player specific payoffs. Since DSG with player specific
payoffs are congestion games with free riders with player specific payoffs, we have
shown that they are also congestion games with player specific payoffs.

6 Conclusions

We have introduced and studied satisfiability games. A special attention has been
devoted to their expressiveness and their equivalence with congestion games.
Congestion games, in particular, is a well-known and studied class of games,
with some nice properties making it particular attracting and indicated to be
chosen as the representative class of all non-cooperative games. Thus, in an ideal
process of classification of games, one can define new and interesting classes of
games as a particular specialization of congestion games with player specific
payoffs obtained by considering, for instance, monotonic delay functions, contin-
uous delays functions, monotonic and continuous delay functions, linear delay
functions, and so on. Other changes can be applied to the definition itself of
congestion games. For example, one can define the payoff achieved by a player
as the maximum (and no longer as the sum) of the delays experienced on the
chosen resources. We have proved that this does not enrich the expressiveness
of congestion games, but however, it can make them more malleable and allow
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simpler and useful reductions. Up to now we know that the class of congestion
games can be partitioned in that of congestion games with player specific payoffs
and that of proper congestion games. We know that this latter class of games is
also characterized by the fact that it contains all and only the games admitting
an exact potential. What about games admitting a weighted potential? Are there
other well characterized classes of congestion games? For example, how about
weighted (linear) congestion games?
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Abstract. The complexity of algorithms for computing game trees on
random assignments has been given substantial attention in the
literature. In this line, we investigate the complexity of algorithms that
compute a special class of game trees T k

2 from a new perspective —
eigen-distribution. This particular distribution is defined as the worst
distribution on assignments to variables of T k

2 regarding a best algo-
rithm. In this paper, we show the eigen-distribution on assignments for
T k

2 in two separate cases, where the assignments to leaves are indepen-
dently distributed (ID) and correlated distributed(CD). Then we use
eigen-distribution to derive the tight bound of the complexity of algo-
rithms for T k

2 .

1 Introduction

In the present work, we are interested in the full binary AND-OR tree T k
2 , where

the subscript 2 means “binary”, and k is the number of rounds (one level AND
gate followed by one level OR gate). This sort of tree can be viewed as a 0-1
game between two players, the 0-player and the 1-player, played as follows: The
0-player starts the game by moving down through the left or right child of the
root. In general, at each internal node, the player that corresponds to its label
(∧ for 0-player, and ∨ for 1-player) picks a child of the node. The goal of each
player is to reach a leaf that is labeled with its name, that is, “0” for 0-player
and “1” for 1-player. It is easy to see that,

Fact 1. Given a full binary AND-OR tree T k
2 , 0-player wins the corresponding

0-1 game if and only if T k
2 evaluates to 0.

By computing a tree T k
2 , we mean evaluating the value of the root of T k

2 , finding
whether the 0-player wins or loses in running the corresponding 0-1 game. At
the beginning of computing, the leaves are assigned with 0′s and 1′s, but are
“covered” so that one cannot see how they are labeled. In computing, a basic step
consists of querying the value of one of the leaves to find whether it is labeled
0 or 1, and the operations repeat until the value of the root can be determined.
The cost/complexity associated with this computation is only the number of
leaves queried by the algorithm; all the other computations are cost free.
� Corresponding author.

M.-Y. Kao and X.-Y. Li (Eds.): AAIM 2007, LNCS 4508, pp. 241–250, 2007.
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Over the years a number of game tree algorithms have been invented. Among
them, the Alpha-Beta pruning algorithm has been proven quite successful, and
no other algorithm has achieved such a wide-spread use in practical applications
as the Alpha-Beta pruning algorithm. A precise formulation of the Alpha-Beta
pruning algorithm can be found in [3]. The relation between the Alpha-Beta
pruning algorithm and the two other well-known game tree algorithms PVS,
and SSS∗ was investigated in [1]. For the purposes of our discussion, we restrict
ourselves to the Alpha-Beta pruning algorithm as done in [4,5,6,8].

In the literature, the tree T k
2 on the random assignment has been extensively

investigated [2,4,8,11]. A traditional analytic model for T k
2 evaluation is one in

which the assignment to the leaves is independently and identically distributed
(IID). Assuming each leaf receives a 0 with probability p, Pearl[4] showed that,
when k ≈ ∞, the value of the root of tree T k

2 is almost a sure 0 or a sure 1,
depending on whether p is higher or lower than some fixed-point probability
p =

√
5−1
2 . Later, Pearl[5] also proved that, when p =

√
5−1
2 , increasing k by one

extra round would increase the computational complexity by a factor R =
√

5+3
2 .

At the same time, Tarsi[8] showed that this branching factor is optimal.
For T k

2 , the most well-known result in the global distribution showed that,

Theorem 1 (Saks and Wighderson[6]). For tree T k
2 on n variables, the ran-

domized complexity is given by

R(T k
2 ) = Θ(nlog2( 1+

√
33

4 )).

Moreover, Saks and Wigderson[6] conjectured that this is the largest possible
gap between the deterministic complexity and the randomized complexity for
any Boolean decision tree. This conjecture is still wide open at the moment.

Besides the randomness on the assignments investigated in the above works,
Yao[11] also observed another kind of randomness inside the algorithm itself,
and constructed a bridge between these two randomness. Yao showed that the
well-known Minimax theorem by von Neumann[10] implies that the distribu-
tional complexity is a lower bound on the complexity of randomized algorithms
that compute the same tree. Moreover, Yao stated that the case for Las Vegas
complexity is universal. That is,

Theorem 2 (Yao’s Principle[11]). In computing any tree T (including T k
2 ),

we have
R(T ) = P (T ).

where P (T ) (resp. R(T )) is the distributional (resp. randomized) complexity for
tree T .

Yao’s Principle is a useful and valid tool in randomized complexity analysis.
Since its introduction, it has been extensively studied in the literature. In ap-
plying Yao’s Principle, a key step is to compute the distributional complexity
of tree. However, no effective computing method for distributional complexity
has been reported at the moment. One of the main motivations for doing the
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present work is to prepare for developing the effective techniques to compute the
distributional complexity.

In this paper, we investigate the complexity of algorithm for tree T k
2 on the

random assignment from the eigen-distribution perspective. We are interested in
two separate cases: 1) the assignments to leaves are independently distributed;
and 2) the assignments to leaves are correlated.

2 Definitions and Notations

Let n be the number of leaves of tree T k
2 , i.e., n = 22k. Let AD be a deter-

ministic algorithm to compute T k
2 and ω = ω1ω2 · · · ωn an assignment to the

leaves {l1, l2, · · · , ln} of tree T k
2 . By C(AD, ω), we denote the number of leaves

queried by AD computing T k
2 on ω. Let W is the set of assignments, and pd

ω the
probability of ω over W with respect to distribution d. The average complexity
C(AD, d) of a deterministic algorithm AD on assignments with distribution d is
defined by

C(AD, d) =
∑

ω∈W
pd

ωC(AD , ω).

Let D be the set of distributions, and AD(T k
2 ) the set of deterministic algo-

rithms computing tree T k
2 . The distributional complexity P (T k

2 ) computing
tree T k

2 is defined by

P (T k
2 ) = max

d∈D
min

AD∈AD(T k
2 )

C(AD, d).

Among the set D, the special distribution δ such that P (T k
2 ) is achieved, that

is,
min

AD∈AD(T k
2 )

C(AD, δ) = P (T k
2 ),

is called an eigen-distribution on assignments for tree T k
2 in this paper.

When the assignments to leaves are restricted in the IID case, by P̂ (T k
2 ) we

denote the corresponding distributional complexity. It is clear that P̂ (T k
2 ) ≤

P (T k
2 ). In the IID case, since each leaf is assigned a 0 with the same probability,

we may analyze the eigen-distribution by studying the probability of a single leaf
receiving a 0. By �, we denote the probability of a leaf receiving a 0 in the eigen-
distribution on assignments for T k

2 in the IID case, and call it distributional
probability throughout this paper.

A randomized algorithm, denoted by AR, is a probability distribution over
that family of deterministic algorithms. For an assignment ω and a randomized
algorithm AR that has probability pAD to proceed exactly as a deterministic
algorithm AD, the cost of AR on ω, C(AR, ω), is defined as the expected number
of the queried leaves:

C(AR, ω) =
∑

AD∈AD(T k
2 )

PADC(AD, ω).
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We denote by AR(T k
2 ) the family of randomized algorithms computing T k

2 . For
tree T k

2 , the randomized complexity R(T k
2 ) is defined by:

R(T k
2 ) = min

AR∈AR(T k
2 )

max
ω∈W

C(AR, ω).

3 The Complexity in the ID Case

For a tree T k
2 , a natural distribution on assignments to choose is the independent

distribution. Hence, we first investigate the eigen-distribution in the case where
the assignments to leaves are independently distributed (ID).

The left and right sub-trees of T (a simple notation for T k
2 ) are designated as

TL and TR, respectively. Let μd(T ) denote the minimum expected number of the
queried variables over all deterministic algorithms computing T with respect to
distribution d, and μd(TL) (resp. μd(TR)) be the analogous quantity for the left
sub-tree TL (resp. the right sub-tree TR). By p(T,d) we denote the probability
of returning a 0 at the root of T in the distribution d, and pL

(T,d) (resp. pR
(T,d))

be the analogous quantity for the left sub-tree TL (resp. the right sub-tree TR).
Then, the μd(T ) and p(T,d) for T on the assignments that are independently
distributed can be computed by the following recursive equations:

{
μd(T ) = min{μd(TL) + pL

(T,d) · μd(TR), μd(TR) + pR
(T,d) · μd(TL)}

p(T,d) = pL
(T,d) · pR

(T,d)

if the root of T is labeled by ∨, and
⎧
⎪⎨

⎪⎩

μd(T ) = min{μd(TL) + μd(TR) − pL
(T,d) · μd(TR),

μd(TL) + μd(TR) − pR
(T,d) · μd(TL)}

p(T,d) = 1 − [(1 − pL
(T,d)) · (1 − pR

(T,d))]

if the root of T is labeled by ∧, with the initial conditions
{

μd(T ) = 1
p(T,d) ∈ [0, 1]

if T contains a single node.
From this inductive computation, it is not hard to see that:

Proposition 1. For any tree T k
2 on assignments that are independently dis-

tributed, the max
d

μd(T k
2 ) is achieved only if the assignments are also identically

distributed.

Therefore, in investigating the eigen-distribution in the ID case, the work can be
restricted in the special IID case. In the following, we focus on the probability
of assignment for a single leaf in replace of the distribution d on assignments to
all leaves. By pk, we denote the probability of returning a 0 at a node labeled
∧ at the k-th round of tree T k

2 , and μp
k the minimum expected number of leaves
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evaluated to this over all deterministic algorithms with respect to the probability
p that each leave is set to 0. Set p ∈ [0, 1]. Then, in the IID case, we obtain the
recurrence {

pk = −p4
k−1 + 2p2

k−1
μp

k = (−p3
k−1 − p2

k−1 + 2pk−1 + 2) × μp
k−1

with initial conditions {
p0 = p
μp

0 = 1

Clearly, by the definition of distributional complexity, the distributional com-
plexity computing T k

2 in the IID case is given by P̂ (T k
2 ) = max

p∈[0,1]
μp

k. Moreover,

it is not hard to see that, this recurrence and Fact 1 provide a simpler proof for
the results of Pearl[4]. Here, we use this recurrence to prove that

Theorem 3. In the IID case, for any tree T k
2 on n leaves, we have

(1) The distributional probability � ∈ [
√

7−1
3 ,

√
5−1
2 ], and � is an strictly in-

creasing function on round k ∈ [1, ∞);
(2) The distributional complexity P̂ (T k

2 ) = Θ(nlog2
1+

√
5

2 ).

Proof. We sketch the proof here. Set nλp
k = μp

k. Since n = 22k = 4k for tree T k
2 ,

we obtain λp
k = log

μ
p
k

4
k . Then, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λp
1 = λp

2 = λp
3 = · · · = λp

∞ = 1
2 for p = 0

log4
34+14

√
7

27 > λp
1 > λp

2 > λp
3 > · · · > λp

∞ > 1
2 for p ∈ (0,

√
7−1
3 )

log4
34+14

√
7

27 = λp
1 > λp

2 > λp
3 > · · · > λp∞ > 1

2 for p =
√

7−1
3⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

log2
1+

√
5

2 < λp
1 < · · · < λp

m−1 < λp
m < log4

34+14
√

7
27 ,

log2
1+

√
5

2 ≤ λp
n < · · · < λp

m+1 < λp
m < log4

34+14
√

7
27 ,

log2
1+

√
5

2 > λp
n+1 > λp

n+2 > λp
n+3 > · · · > λp

∞ > 1
2 ,

for some n > m > 1.

for p∈(
√

7−1
3 ,

√
5−1
2 )

λp
1 = λp

2 = λp
3 = · · · = λp

∞ = log2
1+

√
5

2 for p =
√

5−1
2

log2
1+

√
5

2 > λp
1 > λp

2 > λp
3 > · · · > λp

∞ > 1
2 for p ∈ (

√
5−1
2 , 1)

λp
1 = λp

2 = λp
3 = · · · = λp

∞ = 1
2 for p = 1

Let λk = max
p∈[0,1]

{λp
k}. To sum up, we have

⎧
⎪⎨

⎪⎩

λP
k = log4

34+14
√

7
27 for p =

√
7−1
3 , k = 1

λP
k ∈ (1

2 , log4
34+14

√
7

27 ) for p = (
√

7−1
3 ,

√
5−1
2 ), k ≥ 1

λP
k = log2

1+
√

5
2 for p =

√
5−1
2 , k ≥ 1

Since max
p∈[0,

√
7−1
3 ]

λp
k = λ

√
7−1
3

k , then we obtain the distributional probability � ∈

[
√

7−1
3 ,

√
5−1
2 ] and the distributional complexity P̂ (T k

2 ) = Θ(nlog2
1+

√
5

2 ). 	
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However, the result of P̂ (T k
2 ) = Ω(nlog4

3+
√

5
2 ) proved in the above theorem is

slightly less than R(T k
2 ) = Θ(nlog2(1+

√
33)/4) proposed by Saks and Wigderson[6].

This fact doesn’t meet Yao’s Principle. The reason lies in that the distribution in
the IID case is not the worst case over the global distribution. In the next section,
we will investigate the eigen-distribution in the case where the assignments to
leaves are correlated. The worst case in the global distribution comes from it.

4 The Complexity in the CD Case

In this section, we first introduce a reverse assigning technique to form two
particular sets of assignments, called 1-set and 0-set, where the assignments
to leaves are highly correlated. By E1-distribution (resp. E0-distribution),
we denote the distribution on assignments of 1-set (resp. 0-set) such that the
complexity of any deterministic algorithm is equal. Then, we prove that E1-
distribution is the unique eigen-distribution for tree T k

2 .
By ∧z (resp. ∨z) we denote the result z of operation AND (resp. OR) on two

Boolean variables x, y, where x, y, z ∈ {0, 1}. In generally, we have Table 1:

Table 1. The general operation on two variables

operation result variable x, variable y operation result variable x, variable y

∧1 1 1 ∨0 0 0
∧0 1 0 ∨1 0 1
∧0 0 1 ∨1 1 0
∧0 0 0 ∨1 1 1

In the above table, we remove the fourth row, that is, we preclude the pos-
sibility of both inputs to a ∧ being 0 and to a ∨ being 1. Then, we obtain the
following modified version of Table 1:

Table 2. The modified operation on two variables

operation result variable x, variable y operation result variable x, variable y

∧1 1 1 ∨0 0 0
∧0 1 0 ∨1 0 1
∧0 0 1 ∨1 1 0

With respect to the modified operations, we propose a reverse assigning tech-
nique (RAT) as follows:

Methodology 1 (Reverse assigning technique)
1) Assign a 1 (resp. 0) to the root of tree T k

2 .
2) From the root to the leaves, assign a 0 or 1 to each child of any internal

node as follows until all of the leaves were assigned:
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• for the node labeled ∧ with value 1, assign 1s to all its children;
• for the node labeled ∨ with value 0, assign 0s to all its children;
• for the node labeled ∧ with value 0, assign at random a 0 to one of its

children and a 1 to the other one;
• for the node labeled ∨ with value 1, assign at random a 1 to one of its

children and a 0 to the other one.
3) Form the 1-set (resp. 0-set) by collecting all possible assignments.

Following from this technique RAT , we can form a special class of sets of
assignments with highly correlated properties. For tree T 1

2 , the 1-set and 0-set
of assignments are as follows. By the definitions of E1-distribution and E0-
distribution, it is not hard to see that, in E1-distribution and E0-distribution,
the probability of each class of assignments is 0.25 (see Fig. 1).
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Fig. 1. The 1-set and 0-set for tree T 1
2

By wh
i we denote the i-th assignment of h-set in this figure. A little more

consideration shows that,

Proposition 2. For 1-set and 0-set formed by applying RAT on tree T k
2 , the

following propositions hold:
1) all assignments of these two set can be constructed by combining the as-

signment w1
1 , w

1
2 , w1

3 , w
1
4 and w0

1 , w
0
2 , w

0
3 , w

0
4.

2) in E1-distribution(or E0-distribution), the probability of each assignment

from 1-set (or 0-set) is equal to 1/(4
4k−1

3 ).

For the E1-distribution on assignments of 1-set formed by following RAT , we
have,

Theorem 4. For any tree T k
2 , the E1-distribution is the unique eigen-distribution.

Proof. Following from the RAT, we can see that, for any deterministic algorithm
that computes T k

2 , the worst assignments must be included in the assignments
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of 1-set or 0-set. Moreover, any assignment not included in them is not the worst
assignment. For any tree T k

2 (one level AND gate followed by one level OR gate),
the computation cost in E1-distribution is larger than that in E0-distribution. By
the definition of distributional complexity, it is clear that the eigen-distribution
can not be equal to E0-distribution for any tree T k

2 . Therefore, for any tree T k
2 ,

the assignments such that the distributional complexity is achieved must be in
1-set.

For a tree T k
2 , supposing a distribution on assignments of 1-set that is different

from the E1-distribution be the eigen-distribution, in such distribution, we can
easily find a deterministic algorithm such that the computational complexity is
less than that in the E1-distribution. Hence, this supposed distribution is not
the worst one, which contradicts with the definition of eigen-distribution. 	


In such a special distribution, the distributional complexity is:

Theorem 5. For any tree T k
2 on n leaves, we have

P (T k
2 ) = Θ

(
nlog2(

1+
√

33
4 )

)
.

Proof. Given a game tree T k
2 , the 1-set can be easily constructed by following

from RAT . Considering the probability 1/(4
4k−1

3 ) of each class of assignments
in E1-distribution, we can compute the distributional complexity with respect
to any deterministic algorithm. However, when the round k is large, the compu-
tation is complex.

Here, we propose a simplified method based on the iterated properties of
T k

2 . Denoting by βk (resp. αk) the maximum complexity of a best deterministic
algorithm on assignments of 1-set (resp. 0-set) for T k

2 . Select at random a deter-
ministic algorithm, e.g., the algorithm that reads the nodes from left to right. To
get a recurrence equation for βk and αk, we associate a 1 (resp. 0) occurring in
the assignments of 1-set and 0-set for T 1

2 with the βk−1 (resp. αk−1) for T k
2 . See

Fig.2, where the leaves corresponding βk−1 and αk−1 with underline are queried
by the algorithm. Considering the fact that the probability of each assignment
in E1-distribution and E0-distribution for T 1

2 is 0.25, we have the recurrence

βk = 1
4 · [αk−1 + βk−1 + αk−1 + βk−1] αk = 1

4 · [βk−1 + αk−1 + αk−1]
+ 1

4 · [αk−1 + βk−1 + βk−1] + 1
4 · [αk−1 + βk−1 + αk−1 + αk−1]

+ 1
4 · [βk−1 + αk−1 + βk−1] + 1

4 · [αk−1 + αk−1]
+ 1

4 · [βk−1 + βk−1] + 1
4 · [αk−1 + αk−1]

= 1
4 · [4 · αk−1 + 8 · βk−1] = 1

4 · [9 · αk−1 + 2 · βk−1]
= αk−1 + 2βk−1 = 9

4αk−1 + 1
2βk−1

To sum up, we have the recurrence
{

αk = 9
4αk−1 + 1

2βk−1
βk = αk−1 + 2βk−1

Clearly, the initial conditions α0 = β0 = 1.
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2

Solving this recurrence, we obtain αk = βk = Θ
(
nlog2(

1+
√

33
4 )

)
. By the defin-

ition of the distributional complexity, we have P (T k
2 ) = Θ

(
nlog2(

1+
√

33
4 )

)
. 	


This well-known result was first proved by Saks and Wigderson[6] in another
way, but our proof based on eigen-distribution seems to be much simpler than
their original.

In the CD cases, we have P (T k
2 ) = R(T k

2 ), which meets the famous Yao’s
principle. This result shows that the E1-distribution on assignments of 1-set
formed by RAT is the worst distribution over all possible cases for tree T k

2 .

5 Conclusions

In this paper, we have investigated the eigen-distribution on random assignments
to leaves for a tree T k

2 in the ID and CD cases. Furthermore, we used eigen-
distribution deriving the tight bounds of the complexity of algorithms for T k

2
in the two cases, separately. The results show that the way based on eigen-
distribution to analyze the complexity of algorithms for T k

2 is valid and effective.
A new work along this paper is to study the eigen-distribution for general game
trees, including not only the uniform game trees but also non-uniform game
trees. This work will appear in the future literature.

Moreover, the present work is strictly limited to the Las Vegas case. In the Las
Vegas case, Yao[11] showed that for any tree T k

2 , R(T k
2 ) = P (T k

2 ). By Rε(T k
2 )

(resp. P ε(T k
2 )) we denote the randomized complexity (resp. distributional com-

plexity) in the Monte Carlo case, where ε is the error probability at most.
Corresponding to the duality theorem R(T k

2 ) = P (T k
2 ) in the Las Vegas case,

an obvious question whether there exists the analogous equation of Rε(T k
2 ) =

P ε(T k
2 ) is raised. In the literature, there are two results associated with this

problem. The one is due to Yao[11]: for any tree T k
2 , and for ε ∈ [0, 1

2 ], Rε(T k
2 ) ≥
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1
2P 2ε(T k

2 ). The other one is proved by Vereshchagin [9]: for any tree T k
2 , and for

any ε ∈ [0, 1], Rε(T k
2 ) ≤ 2P

ε
2 (T k

2 ). But the problem of Rε(T k
2 ) ?= P ε(T k

2 ) is still
wide open. If the eigen-distribution on assignments to leaves for T k

2 in the Monte
Carlo case can be ascertained, this open question can be solved since Santha[7]
has proved that Rε(T k

2 ) = (1 − δε)R(T k
2 ), where δ is 1 (resp. 2) for one-sided

(resp. two-sided) error. We suggest to investigate the eigen-distribution in Monte
Carlo case as a future research topic.
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Abstract. A barrier option is an option whose payoff depends on
whether the price path of the underlying asset ever reaches certain pre-
determined price levels called the barriers. A single- (double-) barrier
option is a barrier option with one (two, respectively) barrier(s). No
simple and exact closed-form pricing formula for double-barrier options
has been reported in the literature. This paper proposes a novel tree
model that can price both single- and double-barrier options efficiently
and accurately. This tree model achieves the high efficiency by combina-
torial techniques and numerical accuracy by hitting the barriers exactly.
Numerical experiments are given to verify the superiority of our method.

Keywords: barrier option, combinatorics, option pricing, tree.

1 Introduction

A barrier option is an option whose payoff depends on whether the stock price
reaches a certain predetermined level (the barrier) before the maturity date.
A double- and the single-barrier options are barrier options with two and one
barriers, respectively. A knock-in barrier option comes into existence if the stock
price reaches the barrier(s) before the maturity date, while a knock-out one
ceases to exist if the stock price reaches the barrier(s) before the maturity.

When the payoff functions for the single barrier options follow some standard
forms, analytical pricing formulas are derived in [8]. The valuation of double-
barrier options is discussed in [5,11,6]. However, there are no simple, exact closed-
form formulas for these options. The pricing formula can be expressed as an
infinite series of cumulative normal distributions. Although truncation of this
series is necessary numerically, it can lead to large pricing errors [6].

A tree model is popular for pricing barrier options. This research is interesting
since it can price barrier options with nonstandard payoff functions, such as
power payoff functions. However, there may not be closed-form formulas for
such options. A tree divides the time span from now to the option’s maturity
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Fig. 1. The CRR Tree

Fig. 2. Pricing a Single-Barrier Option by the CRR Tree Model. The barrier is denoted
by L. (a) The effective barrier is L1. (b) The effective barrier is L2.

into n time steps and simulates the stock price discretely at each step. Take
the 3-time-step CRR tree [2] illustrated in Fig. 1 as an example. Let the stock
price at time step 0 be S0. From an arbitrary node with price S′, the CRR tree
says that the stock price after one time step equals S′u (the up move) with
probability p and S′d (the down move) with probability 1 − p, where ud = 1.
Hence the price resulting from j down moves and i− j up moves from time step
0 equals S0u

i−jdj with probability
(

i
j

)
pi−j(1 − p)j . This node at time step i is

denoted as N(i, j) for simplicity. Some details will be introduced in Section 2.
Pricing barrier options on a CRR tree makes the computed prices oscillate

significantly as a function of n [1]. This is because the barrier being assumed by
the tree varies with n. Consider the pricing of a single-barrier option with barrier
L in Fig. 2. In the 2-time-step tree of panel (a), the stock price can not hit the
barrier L exactly. Instead, a near price on the CRR tree like L1 becomes the
barrier adopted. Call it the effective barrier. Similarly, in the 3-time-step tree
of panel (b), the effective barrier is changed to L2. The pricing results oscillate
mainly because the effective barrier fluctuates with n. To solve this problem,
Boyle and Lau suggest to pick a proper n for which the tree has a layer close
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to L [1]. This method reduces the errors dramatically. However, their method
can not be easily adapted to handle two barriers since it is next to impossible to
pick an n that will tailor to both barriers.Derman et al. price the single-barrier
options by interpolation [3]. They first calculate the option value for each hallow
node by moving the barrier outward to L2. Then they calculate the value for
each hallow node by moving the barrier inward to L′. We call L′ and L2 the inner
and outer barriers to L, respectively. The option value for each hollow node is
obtained by interpolating the two values mentioned above.

Ritchken alleviate the oscillation problem [10] by using “stretch parameter(s)”
to tune the structure of his trinomial tree. Thus a layer of his tree can be made
to coincide with each barrier. However, the branching probabilities of Ritchken’s
trinomial tree model are not guaranteed to be valid. More seriously, when a
barrier is very close to the initial stock price, a large number of time steps
is required and his algorithm becomes inefficient. Figlewski and Gao suggest
the adaptive mesh model (AMM) to solve this “barrier-too-close” problem for
pricing single-barrier options [4]. But no efforts have been carried out to extend
the AMM to price double-barrier options.

All aforementioned approaches are not efficient enough since each node of the
tree must be evaluated during backward induction to obtain the price. As the
number of nodes of a tree is proportional to n2, the backward induction also
runs in O(n2) time. Lyuu provides an O(n)−time combinatorial algorithm for
pricing single-barrier options on the CRR tree [7]. However, the pricing results
oscillate significantly since the CRR tree is not guaranteed to hit the barrier.

This paper proposes a novel tree model, the tri-binomial tree (the TB tree
hereafter), for pricing barrier options. The TB tree draws mainly from [7,10].
First, to alleviate the oscillation problem, the TB tree is guaranteed to have
a layer that coincides with each barrier. Second, the TB tree is built on the
CRR tree and the computation can be made linear in n by combinatorial tech-
niques. We also prove that TB tree is constructible and valid. Numerical results
show that our approach can achieve the same level of accuracy with much less
computational time than other tree approaches mentioned above.

2 Preliminaries

We assume that the option initiates at time 0 and matures at time T . The
exercise price for this option is denoted by X . Let St denote the stock price at
time t, where 0 ≤ t ≤ T . St follows the log-normal diffusion process:

St+dt = St · exp[(r − 0.5σ2) dt + σ dWt], (1)

where Wt is the standard Wiener process, r is the risk-free interest rate per
annum, and σ denotes the volatility of the stock price.

A tree model divides the time span from time 0 to time T , into n time steps
and simulates the price discretely at each time step. A tree converges to the
stock price process mentioned in Eq. (1) if the first and the second moments of
the stock price process are matched at each node of the tree. Consider the CRR
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Fig. 3. The TB tree for Pricing Double-Barrier Options. L and H are denoted by thick
dotted lines. The S0-log-prices for the nodes at maturity are listed next to these nodes.

tree illustrated in Fig. 1. To match the first two moments of the stock price, u

is set as eσ
√

T/n. The probability p is set to (erT/n − d)/(u − d).
The payoffs of the barrier options at time T are defined as follows. Define

Sinf = inf0≤t≤T St. The payoff of a down-and-out single-barrier call option with
barrier L is

Payoff =
{

0, if Sinf ≤ L,
max(ST − X, 0), otherwise.

Define Ssup = sup0≤t≤T St. The payoff of a knock-in double-barrier call option
with barriers L and H is

Payoff =
{

max(ST − X, 0), if Ssup ≥ H or Sinf ≤ L,
0, otherwise.

This paper focuses on the pricing aforementioned barrier options. The extension
to other types of barrier options is straightforward.

3 Construction of the TB Tree

The TB tree is built on the CRR tree and is guaranteed to hit each barrier.
We will first show how to construct an TB tree. The O(n)-time combinatorial
algorithm for pricing double-barrier options will be introduced in section 4.

Consider the TB tree for a double-barrier option with barriers H and L in
Fig. 3. The underlying is a CRR tree in shadow. The first two time steps of the
CRR tree is truncated, and this CRR tree begins with three nodes: A, B, and C.
These three nodes are connected by S at time 0. The TB tree has two following
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features: (1) It has two layers that coincide with H and L. (2) The branching
probabilities Pu, Pm, and Pd are valid. To make the truncated CRR tree hit H
and L, the length of a time step Δt should satisfy some specific constraint. We
will explain how to pick a proper Δt later. The length of the the first time step
of the TB tree Δt′ is the remaining amount of time to make the whole tree span
T . A, B, and C are finally selected among the light gray nodes at time Δt′ to
make Pu, Pm, and Pd valid and to make the TB tree hit H and L.

Now we determine Δt. Assume that the stock price at S is S0. Define the S0-
log-price of price V ′ as ln(V ′/S0) for convenience. A S0-log-price of z therefore
implies a price of S0e

z. Note that the difference between the S0-log-prices of two
adjacent nodes like A and B is 2σ

√
Δt, because the upward and the downward

multiplication factors of the CRR tree are eσ
√

Δt and e−σ
√

Δt, respectively. The
S0-log-prices of H and L are h = ln(H/S0) and � = ln(L/S0), respectively. To
make sure the truncated CRR tree has two layers that coincide with H and L,

h−�
2σ

√
Δt

must be some integer k. Assume that we try to construct an m-time-step

tree. The length of each time step Δτ = T/m, but h−�
2σ

√
Δτ

may not be an integer.
So we pick a Δt that is close to Δτ and that makes h−�

2σ
√

Δt
an integer. We pick

Δt =
(

h−�
2κσ

)2
, where κ =

⌈
h−�

2σ
√

Δτ

⌉
. Note that the number of time steps of TB

tree is no longer equal to, but close to, m as we change the length of each time
step. Let the truncated CRR tree has

⌊
T
Δt

⌋
− 1 time steps. The length of the

first time step Δt′ is the remaining amount of time to make the whole tree span
T : Δt′ = T −

(⌊
T
Δt

⌋
− 1

)
Δt. It is easy to verify that Δt ≤ Δt′ < 2Δt.

Finally, we select A, B, and C that are connected by S. Note that three
branches are required for S to match the first two moments of the logarithmic
stock price process; a binomial branch from S does not have enough degrees of
freedom. By Eq. (1), the mean μ and the variance Var of the S0-log-prices of A,
B, and C equal (r − σ2/2)Δt′ and σ2Δt′, respectively. Let the S0-log-price of
B be û. To make the truncated CRR tree hit H and L, the following must be
satisfied for some integer j:

û =
{

� + 2jσ
√

Δt, if the truncated CRR tree has even number of time steps,

� + (2j + 1)σ
√

Δt, otherwise.

Those nodes whose S0-log-prices satisfy the above constraint at time Δt′ are
colored in light gray in Fig. 3. We choose A, B, and C to make Pu, Pm, and
Pd valid. Recall that the difference between two adjacent nodes’ S0-log-prices
is 2σ

√
Δt . There exists a unique light gray node whose S0-log-price lies in the

interval [ μ − σ
√

Δt, μ + σ
√

Δt). We select this node as B. For example, the S0-
log-price of B is �+3σ

√
Δt in Fig. 3. The S0-log-price of B is closest to μ among

those of the light gray nodes. The S0-log-prices of A and C are μ̂ + 2σ
√

Δt and
μ̂ − 2σ

√
Δt, respectively. Define β ≡ μ̂ − μ, α ≡ β + 2σ

√
Δt, γ ≡ β − 2σ

√
Δt.

Note that β ∈ [−σ
√

Δt, σ
√

Δt) and that α > β > γ. The branching probabilities
are derived by solving the following equalities



256 T.-S. Dai and Y.-D. Lyuu

Puα + Pmβ + Pdγ = 0, (2)
Puα2 + Pmβ2 + Pdγ

2 = Var, (3)
Pu + Pm + Pd = 1. (4)

Eqs. (2) and (3) match the first two moments of the logarithmic stock price,
and Eq. (4) ensures that Pu, Pm, Pd as probabilities sum to one. A proof given
in Appendix A shows that the inequalities 0 ≤ Pu, Pm, Pd ≤ 1 are satisfied.

We now develop an efficient and accurate algorithm for pricing double-barrier
options on the TB tree. First, an O(n)-time algorithm is developed to price a
double-barrier option on the CRR tree in section 4. This algorithm can be used
to evaluate the option values of A, B, and C efficiently since each of these nodes
can be viewed as the root node of a CRR tree that begins at time Δt′. The final
pricing result of our TB tree is e−rΔt′

(Pu × VA + Pm × VB + Pd × VC), where
VX denotes the option value at X .

Pricing a single-barrier option with barrier L by the TB tree is much simpler!
We simply construct the truncated CRR tree that has a layer coinciding with
L. Note that we do not need to adjust the length of a time step since it needs
to match only L (instead of L and H).

4 An O(n)-Time Combinatorial Algorithm on a CRR
Tree

We first derive a useful combinatorial formula by the reflection principle and
the inclusion-exclusion principle. This formula is used to build up the pricing
algorithm. We focus on the knock-in double-barrier call options. The extension
to other types of double-barrier options is straight forward.

A Combinatorial Formula
A combinatorial formula is derived with the help of the lattice in Fig. 4. This
lattice reflects the structure of the CRR tree. The x- and y- coordinates denotes
the time step of the tree and the stock price level, respectively. To fit the price
movement on the CRR tree, each path can move from vertex (i, j) to vertex
(i+1, j+1) (the up move) or vertex (i+1, j−1) (the down move). Now consider
the following problem: How many price paths starting form A will reach either
H or L before arriving at B? Without loss of generality, we assume that a, b ≥ 0.
A simplified problem is discussed first: How many paths moving form A to B
will hit barrier H before one hit of barrier L? One such path may hit barrier H
at J and barrier L at K. We can reflect the path ÂJ (marked by solid curve)
with respect to the H-axis to get Â1J (marked by dash curve). Each path from
A to J maps to a unique path from A1 to J . Thus the number of paths from A
to J equals to the number of paths from A1 to J . The reflection principle says
that the number of paths staring from A and hitting H before reaching B equals
to the number of paths moving from A1 to B. The reflection principle can be
applied more than once. The curve Â1K can be reflected with respect to the
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Fig. 4. Count the Number of Paths That Hit Barrier H and L by the Reflection
Principle

L-axis to obtain Â2K. Again, the number of paths staring from A1 and hitting
L before reaching B equals to the number of paths moving from A2 to B. Thus
the number of paths moving from A to B and reaching H at least once before
reaching L is equal to the number of paths moving from A2 to B. Assume that x
up moves and y down moves are required to move from A2 to B. Thus we have
x + y = n and x − y = a − b + 2s. We get x = n+a−b+2s

2 by solving the above
equations. So the answer to the aforementioned problem is

(
n

n+a−b+2s
2

)

for even, non-negative n + a − b. (5)

Note that a path counted by Eq. (5) may hit L first before hitting H . The point
is that among the hits, one hit of H must appear before one hit of L.

The problem of counting the number of paths that will hit either H or L before
arriving at B is now within reach. First, a function f is constructed to map each
path to a string. This string contains the information about the barrier hitting
sequence. For example, f(ÂB) = HHL since ÂB hits H twice before hitting L.

Next, we define αi as the set of paths whose f value contains

i
︷ ︸︸ ︷
H+L+H+ · · ·. L+

and H+ denote a sequence of Ls and Hs, respectively. Obviously, ÂB belongs to
set α1 and set α2. Similarly, define βi as the set of paths whose f value contains

i
︷ ︸︸ ︷
L+H+L+ · · ·. Thus the path ÂB belongs to set β1. The number of elements in
set αi and βi can be calculated by repeatedly using the reflection principle. The
number of elements in each set is listed as follows:

| αi | =

⎧
⎪⎪⎨

⎪⎪⎩

(
n

n+a+b+(i−1) s
2

)

for odd i
(

n
n+a−b+is

2

)

for even i

| βi | =

⎧
⎪⎪⎨

⎪⎪⎩

(
n

n−a−b+(i+1) s
2

)

for odd i
(

n
n−a+b+is

2

)

for even i

(6)
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Note that each path that hits the barrier may belong to more than one set. For
example, ÂB belongs to α1, α2, and β1. The inclusion-exclusion principle is then
applied to calculate the number of paths that moves from A (with coordinate
(0, −a)) to B (n, −b) and that hit either H or L at least once as follows:

N(a, b, s) =
�n

s �∑

i=1

(−1)i+1(|αi| + |βi|). (7)

The Pricing Algorithm

The construction of the pricing algorithm can be divided into several differ-
ent cases. For some degenerate cases like S0 ≤ L, S0 ≥ H , and X ≥ H , the
value of a knock-in double-barrier option can be proved to equal the value of
a vanilla call option. These degenerate cases can be directly priced by any an-
alytical or numerical method that price a vanilla call option. So we further
focus on the case L < S0 < H and X < H from now on. The pricing result
is obtained by summing the value contributed by each node at the maturity
of the CRR tree. Combinatorial techniques is applied to implement our pric-
ing algorithm efficiently. We first put the CRR tree on a lattice as displayed
in Fig. 5. Assume that the barrier H and L equal to S0u

n−hdh(= S0u
n−2h)

and L = S0u
n−ldl(= S0u

n−2l), respectively. The exercise price X satisfies the
following equality S0u

n−ada ≤ X < S0u
n−a+1da−1 for some integer a.

Now we analyze the value contributed by a price path that reaches N(n, j).
The probability for this path is pn−j(1−p)j . The payoff at N(n, j) is (S0u

n−jdj−
X)+. Thus the value contributed by this path is p(j) ≡ e−rT pn−j(1 − p)j

(S0u
n−jdj − X)+, if this price path hits the barrier. Note that the value contri-

bution by N(n, j) is V (j) ≡ (n
j )p(j) if N(n, j) is above H or below L (inclusive).

This is because all the price paths that reach N(n, j) must also hit the barrier.
The pricing algorithm can be divided into two following cases. For conve-

nience, the term“terminal node” refers to the node of the tree at maturity date.
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Case 1. L < X < H : The option value can be decomposed into two parts:
(1) the value contributed by the terminal nodes between X and H , and (2) the
value contributed by the terminal nodes above H (inclusive). The first part can
be computed by accumulating the values contributed by the terminal nodes, says
N(n, j) (a > j > h), between X and H . The number of paths that reach one of
the barriers before reaching N(n, j) is N(n − 2h, 2j − 2h, 2l − 2h) (see Eq. (7)).
The value contributed by such a path is p(j). Therefore, the value contributed
by node N(n, j) is N(n − 2h, 2j − 2h, 2l − 2h)p(j). The first part of the option
value is P0 ≡

∑a−1
j=h+1 N(n − 2h, 2j − 2h, 2l − 2h))p(j). The second part of the

option value is computed by accumulating the values contributed by the termi-
nal nodes, says N(n, i) (0 ≤ i ≤ h), above the barrier H (inclusive). The value
contributed by N(n, i) is V (i). Therefore, the second part of the option value is
P1 =

∑h
i=0 V (i). The value of a knock-in double-barrier call option is P0 + P1.

Case 2. X ≤ L: The option value is decomposed into three parts: (1) the value
contributed by the terminal nodes between L and H , (2) the value contributed
by the terminal nodes above H (inclusive), and (3) the value contributed by the
terminal nodes between L (inclusive) and X . The first part of the option value
is expressed as P ′

0 ≡
∑l−1

j=h+1 N(n − 2h, 2j − 2h, 2l − 2h)p(j). The second part
of the option value equals P1. The third part is computed by accumulating the
values contributed by the terminal nodes, says N(n, k) (l ≤ k < a), between L
(inclusive) and X to get P ′

1 ≡
∑a

k=l V (k). The option value is P ′
0 + P1 + P ′

1.

5 Experimental Results

We first compare the performance among the TB tree, Lyuu’s algorithm [7],
and the Ritchken’s trinomial tree [10] in Table 1. All programs are run on a
Pentium-4 2.8GHz computer. Note that Lyuu’s algorithm oscillates significantly.
Both Ritchken’s trinomial tree and the TB tree converge monotonically to the
true value 5.9968. But the TB tree can achieve each level of accuracy with fewer
computational time than the Ritchken’s trinomial tree. Thus we conclude that
the TB tree is superior to both Lyuu’s and the Ritchken’s approaches.

Table 1. Convergence Rate for Pricing a Down-and-Out Single-Barrier Option

Ritchken Lyuu TB
Time (sec) n Value n Value n Value

0.001 100 5.9997 1000 6.1002 500 5.9980

0.004 200 5.9986 4000 6.1998 2000 5.9972

0.016 400 5.9980 16000 6.0829 8000 5.9969

The initial stock price is 95, the exercise price is 100, the risk-free rate is 10% per
annum, the volatility of the stock price is 25%, the time to maturity is 1 year, and the
barrier is 90. Time denotes the computational time in seconds. n and Value denotes the
number of time steps and the pricing result of each tree model.
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Table 2. Convergence Rate Comparison between AMM and the TB tree

AMM TB
Level n Inner Barrier Outer Barrier n Value

2 671 0.000001 0.000015 655 0.000003

1 2686 0.000001 0.000005 2625 0.000003

The initial stock price and the exercise price is 100, the risk-free rate is 10%, the
volatility of the stock price is 30%, the time to maturity is 1 year, and the two barriers
are 99.5 and 120, respectively. The pricing results of the TB tree converge to 0.000003.

The TB tree can accurately solve the barrier-too-close problem for pricing
double-barrier options while AMM can not as illustrated in Table 2. Level de-
notes the AMM level. The number of steps of AMM is determined by the AMM
level. The Inner Barrier and the Outer Barrier denote the results computed
by moving the upper barrier (120) to the inner barrier and the outer barrier,
respectively. Note that AMM undervalues the option if the upper barrier moves
down to the inner barrier and overvalues the option if the upper barrier moves
up to the upper barrier. Each pricing result of the TB tree is properly selected so
the number of steps of the TB tree is approximately equal to that of the AMM.
Obviously, the TB tree provides more accurate results than the AMM.

6 Conclusion

The TB tree that can efficiently and accurately price barrier options is proposed
in this paper. It is mainly composed of the CRR tree so the computation can
be speeded up by combinatorial techniques. It produces accurate pricing results
since it has a layer to coincide with each barrier. Numerical results show that
the TB tree are superior to other existing approaches.
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A Validity of Risk-Neutral Probabilities

Define det = (β − α)(γ − α)(γ − β), detu = (βγ + Var)(γ − β), detm = (αγ +
Var)(α − γ), and detd = (αβ + Var)(β − α). Then Cramer’s rule applied to
Eq. (2)–(4) gives Pu = detu/det, Pm = detm/det, and Pd = detd/det. Note
that det < 0 because α > β > γ. To ensure that the branching probabilities
are valid, it suffices to show that Pu, Pm, Pd ≥ 0. As det < 0, it is sufficient
to show detu, detm, detd ≤ 0 instead. Finally, as α > β > γ, it suffices to
show that βγ + Var ≥ 0, αγ + Var ≤ 0, and αβ + Var ≥ 0 under the premise
β ∈ [−σ

√
Δt, σ

√
Δt). Indeed,

βγ + Var = β2 − 2βσ
√

Δt + σ2Δt′ ≥ β2 − 2βσ
√

Δt + σ2Δt = (β − σ
√

Δt)2 ≥ 0,

αγ + Var = β2 − 4σ2Δt + σ2Δt′ ≤ β2 − 4σ2Δt + 2σ2Δt = β2 − 2σ2Δt ≤ 0,

αβ + Var = β2 + 2βσ
√

Δt + σ2Δt′ ≥ β2 + 2βσ
√

Δt + σ2Δt = (β + σ
√

Δt)2 ≥ 0,

as desired.
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Abstract. Pricing arithmetic average options continues to intrigue re-
searchers in the field of financial engineering. Since there is no analytical
solution for this problem until present, developing an efficient numerical
algorithm becomes a promising alternative. One of the most famous nu-
merical algorithms for pricing arithmetic average options is introduced
by Hull and White [10]. In this paper, motivated by the common idea
of reducing the nonlinearity error in the adaptive mesh model [7] and
the adaptive quadrature numerical integration method [6], the logarith-
mically equally-spaced placement rule in the Hull and White’s model is
replaced by an adaptive placement method, in which the number of rep-
resentative average prices is proportional to the degree of curvature of
the option value as a function of the arithmetic average price. Numerical
experiments verify the superior performance of our method in terms of
reducing the interpolation error. In fact, it is straightforward to apply
this method to any pricing algorithm with the techniques of augmented
state variables and the piece-wise linear interpolation approximation.

Keywords: Arithmetic average options, logarithmically equally-spaced
placement, adaptive placement.

1 Introduction

Asian options are path dependent securities whose payoff depends on the average
of the underlying prices during the option life. They were originally issued in 1987
by Banker’s Trust Tokyo on crude oil contracts, and hence the name “Asian”
option. Asian options are commonly traded in a thinly traded market to prevent
price manipulation. Besides, Asian options are less expensive than comparable
vanilla options, because the volatility of the average value of an underling asset is
lower than the volatility of the value of the underling asset. In practice, end-users
of commodities, energies, or foreign currencies tend to be exposed to average
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prices over time, so Asian options are also attractive for them. This is because
Asian options are often used as they more closely replicate the requirements of
end-users exposed to price movements on the underlying asset.

To this date, more and more financial instruments include the average feature
from Asian options, for example, structure notes issued by international banks,
the contracts of convertible bonds in Taiwan, etc. If the underlying price process
follows the geometric Brownian motion, the analytical pricing formula for geo-
metric average options is feasible since the product of lognormally distributed
prices remains to follow the lognormal distribution. Based upon this observa-
tion, Kemna and Vorst proposed an analytical solution for European geometric
average options [11]. Unfortunately, it is still analytically intractable to price
arithmetic average options due to the lack of proper mathematical representa-
tion for the sum of lognormal random variables. Thus many researches were
devoted to deal with the distribution of the sum of lognormal random variables
and derive approximated pricing formulae for arithmetic average options. Sev-
eral works along this direction include the fast Fourier transformation in [2], the
Edgeworth series expansion in [16], the reciprocal Gamma distribution in [13],
the Laplace transform inversion in [9], etc.

The tree-based model is a possible alternative to price arithmetic average
options. However, the naive pricing method based on the tree model which is
able to derive the exact value of the arithmetic average options by recording all
possible arithmetic average prices is simply intractable due to the exponential
growth of the number of possible arithmetic average prices with respect to the
number of time steps. In this paper, the exact option value stands for the option
value derived from a tree-based model without any interpolation error.

To overcome the problem of the exponential growth of the number of possible
arithmetic average prices, Dai and Lyuu develop a trinomial-tree pricing model
for arithmetic average options that guarantees the convergence to the exact
option value [5], in which the notion of integrality of stock prices is employed
to reduce the time complexity of recording all possible arithmetic average prices
to be sub-exponential. However, it is still intractable to price arithmetic average
options via this model when the number of time steps is large.

On the other hand, in Hull and White’s model [10], instead of keeping track of
all possible arithmetic average prices, representative average prices are logarith-
mically equally-spaced placed between the maximum and minimum arithmetic
average prices for each node, and the piece-wise linear interpolation is adopted
to derive the corresponding option values for nonexistent average prices during
the backward induction. Therefore, the interpolation error occurs and whether
the interpolation error vanishes is uncertain for all but a single scenario in which
the number of representative average prices for each node and the number of
time steps for the tree model are well collocated, see [8].

Along with the line of [10], Neave and Turnbull [14] suggest using the con-
ditional frequency distribution to adjust the number of representative average
prices for each node. Cho and Lee [3] replace the uniform allocation of the num-
ber of representative average prices in the Hull and White’s model with the
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Fig. 1. The illustration of our adaptive placement method. Hull and White [10]
adopted the combination of the uniform allocation and logarithmically equally-spaced
placement rules in their pricing algorithm, i.e. m=100. Other modifications of the Hull
and White’s model focus on devising more efficient non-uniform allocation rules, i.e.
M(i, j) is different for each node(i, j). However, the logarithmically equally-spaced
placement rule is a common component in these models. In our adaptive placement
method, the number of representative average prices is proportional to the degree
of curvature of the option value function and an efficient non-uniform allocation of
representative average prices is achieved automatically.

distribution of the number of possible geometric average prices. Klassen [12]
proposes a revised version of the algorithm of [10], in which only a set of average
prices at each node is considered, and the grid space for the logarithm of the
arithmetic average prices is a pre-specified function of the time to maturity, the
time steps, and the volatility of the stock price process. Although these methods
of adjusting the allocation of the number of the representative average prices over
the tree exhibit superior convergence rate to exact option values than the Hull
and White’s model, their major disadvantages are the absence of the economic
meanings and the guarantee of the convergence of the interpolation error.

A different point of view is adopted in [1] and [4] to improve the convergence
rate of the tree-based models for pricing arithmetic average options. Instead of
recording the maximum and minimum arithmetic average prices, a more compact
range is derived such that the interpolation error can be reduced effectively.
Moreover, for European-style arithmetic average options, the optimal allocation
of the representative average prices over the tree is derived in [4] to minimize
the accumulated interpolation error of the option value.

Dedicated to devising the allocation of representative average prices over the
tree to reduce the interpolation error, the suggested allocation rules of the above
modifications are no longer uniformly distributed but are contingent on the
probability reaching the underlying node, the time to maturity of the underlying
node, the number of time steps in the tree model, and the volatility of the
underlying process. The differences between uniform and non-uniform allocations
are illustrated in Panel 1 of Fig. 1.
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With the uniform allocation rule being replaced, the logarithmically equally-
spaced placement rule proposed by Hull and White is still retained in the afore-
mentioned works. Aiming at simultaneously guaranteeing the convergence of the
interpolation error and improving the efficiency, we proposed a novel aspect to
minimize the interpolation error by replacing the logarithmically equally-spaced
placement rule with an adaptive placement method, in which more represen-
tative average values are needed in the area around which the option value
function of the arithmetic average price is with higher degree of curvature, and
fewer representative average values are placed where the option value function is
with lower degree of curvature. The ideas of the adaptive placement method and
the logarithmically equally-spaced rules are illustrated in Panel 2 of Fig. 1. To
achieve this goal, the adaptive placement method is actually designed to govern
the linear interpolation error between each pair of adjacent representative aver-
age prices under a limit criterion. Moreover, our method forms automatically an
efficient non-uniform allocation of representative average prices over the tree.

2 Arithmetic Average Options

In this paper, the non-dividend-paying underlying stock price in the risk neutral
world is assumed to follow the geometric Brownian motion: dSt/St = rdt+σdZ,
where r is the risk free rate, σ is the volatility of the asset price, and Z is
a Wiener process. Suppose that the stock price is sampled at the time points
0 = t0 < t1 < · · · < tn = T during the life of the arithmetic average options. If
the corresponding stock prices are St0 , St1 , · · · , Stn , the arithmetic average price
from time 0 to t is A(t) = (

∑l
i=0 Sti)/(l + 1), where tl ≤ t < tl+1. In addition,

the exercise value of the arithmetic average call considered in this paper at time
t is max(A(t) − X, 0), where X is the strike price of the arithmetic average call.
Furthermore, the stock price is assumed to be sampled periodically, which is
often the case in the real world, and therefore ti = iΔt and Δt = T/n.

The Hull and White’s Model
In the field of option pricing, the binomial-tree model divides the time horizon
of an option into n discrete time steps and discretizes the stock prices at each
time step. In Panel 1 of Fig. 2, it is shown that the stock price at time step 0 is
S0 (at node(0, 0)), and the stock price can either move up to S0u (at node(1, 0))
or down to S0d (at node(1, 1)) at the first time step, where u = exp(σ

√
Δt) is

the magnitude of a upward movement for the stock price, and d = exp(−σ
√

Δt)
is the magnitude of a downward movement for the stock price. Similarly, each
stock price can either move up or move down at subsequent time steps.

It is in theory possible to employ the binomial-tree model to calculate exact
values of arithmetic average options by recording all possible average values
reaching each node. Unfortunately, if the option life is divided into n periods,
the number of all possible arithmetic average prices is 2n, which implies that the
computation complexity is intractable even for small values of n.
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Fig. 2. The illustration of the Hull and White’s model. In Panel 1, the node(i, j)
stands for the node at time point i with j cumulative down movements and the S0u

i−jdj

is the corresponding stock price. Amax(i, j) (Amin(i, j)) is the maximum (minimum)
average stock price among all possible paths from node(0, 0) to node(i, j). In Panel 2, for
each possible average price A(i, j, k), it is necessary to find the corresponding Au and Ad

and then to derive the option values Cu and Cd by the piece-wise linear interpolation.
The continuation value for A(i, j, k) is C(i, j, k) = (p · Cu + (1 − p) · Cd)e

−rΔt.

One of the most famous tree-based models to price arithmetic average options
efficiently is proposed in [10]. In their algorithm, to avoid tracking all possible
arithmetic average prices of each node, only the maximum and the minimum
arithmetic average prices of all traversed paths for each node are calculated,
which is illustrated in Panel 1 of Fig. 2.

For node(i, j) with the stock price S0u
i−jdj for 0 ≤ j ≤ i ≤ n, the maximum

arithmetic average price is contributed by a price path starting with i − j con-
secutive up movements followed by j consecutive down movements, whose value
is Amax(i, j) = (S0

1−ui−j+1

1−u + S0u
i−jd1−dj

1−d )/(i + 1). Likewise, the value of the
corresponding minimum arithmetic average price can be calculated from a price
path starting with j consecutive down movements followed by i − j consecutive
up movements: Amin(i, j) = (S0

1−dj+1

1−d + S0d
ju 1−ui−j

1−u )/(i + 1). Once equipped
with the knowledge about the maximum and minimum arithmetic average prices
for each node, the logarithmic space between Amax(i, j) and Amin(i, j) is divided
into m equal-length sub-intervals and m + 1 representative average prices are
obtained via A(i, j, k) = exp

(
m−k

m ln(Amax(i, j)) + k
m ln(Amin(i, j))

)
.

After building the tree and the table of representative average prices for each
node, we decide the payoff of each representative average price of the nodes
at maturity first. Next, the option value is derived via the backward induction
procedure. The backward induction procedure from node(i + 1, j) and node(i +
1, j + 1) to node(i, j) is illustrated in Panel 2 of Fig. 2.

For A(i, j, k), the evolutions of the arithmetic average price at the next time
point are Au = [(i+1)A(i, j, k)+S0u

i+1−jdj ]/(i+2), and Ad = [(i+1)A(i, j, k)+
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S0u
i+1−(j+1)d(j+1)]/(i + 2). Suppose that Au is inside the range [A(i + 1, j, ku),

A(i + 1, j, ku − 1)]. The option value Cu for the arithmetic average price Au is
approximated by the linear interpolation Cu = wuC(i+1, j, ku)+ (1−wu)C(i+
1, j, ku−1), where wu = (A(i+1, j, ku−1)−Au)/(A(i+1, j, ku−1)−A(i+1, j, ku)).
Similarly, the option value of Cd for the arithmetic average price Ad is derived
from Cd = wdC(i + 1, j + 1, kd) + (1 − wd)C(i + 1, j + 1, kd − 1), where wd =
(A(i + 1, j + 1, kd − 1) − Ad)/(A(i + 1, j + 1, kd − 1) − A(i + 1, j + 1, kd)), if Ad

is inside the range [A(i + 1, j + 1, kd), A(i + 1, j + 1, kd − 1)]. As a consequence,
the continuation value for A(i, j, k) is C(i, j, k) = (p · Cu + (1 − p) · Cd)e−rΔt.

Some Modifications for the Hull and White’s Model
The interpolation error is inevitable in the Hull and White’s model due to the
limited number of representative average prices at each node and employing
the piece-wise linear interpolation to find option values for nonexistent average
prices. The brute-force method via increasing the number of representative aver-
age prices for each node is able to enhance the accuracy for the option values of
course, but meanwhile it is accompanied with unacceptable computation time.
In Section 4, in addition to the Hull and White’s model, the performance of some
modifications, including inserting the strike price into the average price table,
applying the quadratic interpolation, and tightening the range for representative
average prices,1 will be compared to that of our adaptive placement method.

3 Our Models

The goal of our adaptive placement method is to intelligently reduce the inter-
polation error for pricing arithmetic average options in the tree-based model.
Motivated by the common idea of dealing with the nonlinearity error in the
Figlewski and Gao’s adaptive mesh model [7] and the adaptive quadrature nu-
merical integration method [6], our method differs from the Hull and White’s
method in the sense that more representative average prices are placed in the
range where the option value function is with higher degree of curvature and
fewer representative average prices are placed in the range where the option
value function is with lower degree of curvature (see Fig. 1).

1 For European fixed-strike-price arithmetic average calls, according to [1], for nodes at
time point i, if some average price A is larger than the upper bound (n+1)X/(i+1),
because this path is sure to be in the money at maturity, the corresponding expected
option value can be calculated directly via

e−r(n−i)Δt[(i + 1)A − (n + 1)X + S0u
i−jdjerΔt 1 − er(n−i)Δt

1 − erΔt
]/(n + 1).

Therefore, the range [Amin(i, j), Amax(i, j)] can be curtailed to [min(Amin(i, j), (n+
1)X/(i + 1)), min(Amax(i, j), (n + 1)X/(i + 1))], and whenever the average price is
above the upper bound, the corresponding expected option value can be derived via
the above equation without any interpolation error.
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The details of our adaptive placement method are elaborated as follows. For
any A ∈ [A1, A2], where A1 and A2 stand for any pair of adjacent representative
average prices in the table of average prices for some node, the option value for A
can be derived from the linear interpolation C = C1 · A−A2

A1−A2
+C2 · A−A1

A2−A1
, where

C1 and C2 are corresponding option values for A1 and A2. By the mean-value
theorem, the error term of the linear interpolation caused from the nonlinearity
of the option value function in [A1, A2] can be expressed as

C′′(ξ)
2!

· (A − A1) · (A − A2), for some number ξ between A1 and A2. (1)

Our adaptive placement method is designed to examine whether the linear inter-
polation error between each pair of adjacent representative average prices in Eq.
(1) is below some pre-specified limit. Once the error of the linear interpolation
inside the range of [A1, A2] is not negligible, i.e. C′′(ξ) is too large or the distance
between A1 and A2 is too far, we divide [A1, A2] into finer subsets by inserting
an extra representative average price inbetween and then repeat the same pro-
cedure of examining the error of the linear interpolation for each subset. Once
the value of the error term between any pair of adjacent representative average
prices is smaller than the predefined threshold (termed the second order error
criterion in our method), this examining-and-dividing process is stopped.

In practice, another constant termed the precision criterion is also defined
to represent the threshold of negligible refinement for both average prices and
option values in our method. The above examining-and-dividing process is also
terminated when the difference between adjacent representative average prices
or their corresponding option values is smaller than this minimum criterion. The
purpose of introducing the precision criterion is to prevent possibly infinite di-
viding caused from the non-differentiable point. Within each examination of the
linear interpolation error, we approximate C′′(ξ) in Eq. (1) by the second order
numerical differentiation. For any pair of adjacent representative average prices
A1 and A2, the midpoint A = (A1 +A2)/2 is employed together to approximate
the error term of the linear interpolation for this range.

The steps to price arithmetic average options in this paper are described as
follows. During the phase of building the stock price tree, only the maximum
and minimum average prices for each node are recorded as representative average
prices. Meanwhile, we also determine whether the strike price is needed to be
inserted into the range between the maximum and the minimum average prices.
As a consequence, there will be two or three representative average prices for each
node after building the stock price tree. Since the number of possible arithmetic
average prices for the nodes at the initial three time steps is not larger than
three, it is not necessary to perform the above procedure and instead we record
all possible average prices for these nodes.

After building the stock price tree, the tables of representative average prices
for all nodes are mainly constructed during the phase of backward induction
We take an example to illustrate the examining-and-dividing process of our
adaptive placement method step by step. Suppose S0 = X = 50, n = 40,
T = 1, r = 10%, σ = 80%, and both the second order error criterion and the
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Fig. 3. The numerical example for the examining-and-dividing process. The
values of parameters in this example are S0 = X = 50, n = 40, T = 1, r = 10%,
σ = 80%, and the second order error criterion and the precision criterion are both 0.5.
These figures illustrate the examining-and-dividing process for node(37, 25). Once the
approximate linear interpolation error is larger than 0.5, the pair of the average price
and the call value in boldface will be inserted into the table of representative average
prices of node(37, 25). The approximate linear interpolation error for any pair of adjacent
representative prices in the final table is bounded by the second order error criterion.

precision criterion are 0.5. For node(37, 25), the examining-and-dividing process
is sketched in Fig. 3. Inside the frame of each step, there are three pairs of
representative average prices and the corresponding call values, and we also
report the linear interpolation error when these three pairs of representative
average prices and option values are considered.

When the backward induction progresses to node(37, 25), only 83.4062, 50,
and 12.3309 are in the initial table of representative average prices, and their cor-
responding option values are 28.1577, 0, and 0 respectively. In step 1, the pairs of
(83.4062, 28.1577), ((83.4062+50)/2=66.7031, 13.2048), and (50, 0) are consid-
ered to approximate the linear interpolation error for the range between 83.4062
and 50. Because the approximate linear interpolation error 0.8740 is larger than
the second order error criterion, the pair of the average price 66.7031 and the
corresponding call value 13.2048 should be inserted into the table of represen-
tative average prices. In step 2, the approximated linear interpolation error in
the range between 83.4062 and 66.7031 is 3.2452E-15, which is smaller than the
second order error criterion 0.5. Therefore, we do not insert the pair of the av-
erage price 75.0546(=(83.4062+66.7031)/2) and the corresponding option value
20.6813 since the linear interpolation works pretty well in the range between
83.4062 and 66.7031. Following the same reasoning, we can derive the final table
of representative average prices and their corresponding option values through
steps 3 to 8, in which the approximate linear interpolation error for any pair of
adjacent representative average prices is below the second order error criterion.
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Fig. 4. Comparisons of the distributions of representative average prices of
the adaptive placement method and the Hull and White’s model. For the
readability of this figure, the values of parameters are specified as: S0 = X = 50,
n = 40, T = 1, r = 10%, σ = 30%, the second order error criterion is 0.01, and the
precision criterion is 0.001. In addition, the number of representative average prices in
the Hull and White’s model is 20.

In addition, the option value as the function of the arithmetic average price
is plotted in Fig. 3. Since the performance of the piece-wise linear interpolation
is poor around where the option value function is with high degree of curvature,
our algorithm places more representative average prices in these areas to reduce
the linear interpolation error. On the other hand, due to the satisfactory per-
formance of the piece-wise linear interpolation for dealing with the option value
function with low degree of curvature, our algorithm argues that less represen-
tative average prices placed in those areas will be sufficient.

4 Numerical Results

Comparisons with the Hull and White’s Model
The differences between the logarithmically equally-spaced placed rule in the
Hull and White model [10] and the adaptive placement rule in our model are
shown in Fig. 4. In Panel 1 of Fig. 4, for some node at maturity, it is easily
found that there is no linear interpolation error for both linear segments, and
therefore it is not necessary to insert any representative average price. However,
the Hull and White’s model still employs m + 1 representative average prices
for each node at maturity. For each linear segment, our method provides the
interpolated results as accurate as those in the Hull and White’s model, but
near the kink, our method will outperform the Hull and White’s model except
the strike price happens to be one of representative average prices in their model.

In Panel 2 of Fig. 4, it is clear that the logarithmically equally-spaced place-
ment in the Hull and White’s model places too many representative average
prices on the region with low degree of curvature, but only a few representative
average prices are needed in our adaptive placement method to derive inter-
polated results with sufficient accuracy in this region. On the contrary, to deal
with regions with high degree of curvature, the Hull and White’s model generates
unexpected large pricing errors due to large interpolation error.
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Fig. 5. The rates of convergence of seven different methods of pricing arith-
metic average calls. Note that our adaptive placement method converges faster than
other methods with respect to the number of representative average prices. Note also
that except our adaptive placement method, the convergence rates of other methods
are improved when the algorithm of AMO is applied.

Convergence Rates with the Number of Representative Average Prices
This section compares the rate of convergence with respect to the number of
representative average prices for different methods. The values of parameters in
our numerical example are as follows: S0 = X = 50, T = 1, r = 10%, σ = 80%,
n = 40, and different numbers of representative average prices are examined. In
order to obtain a better understanding of the rates of convergence, an analysis on
the relative error and the number of representative average prices is performed.
Plots of ln(|relative error|) in relation to the number of representative average
prices for the arithmetic average calls are in Fig. 5.

Obviously, the Hull and White’s model converges poorly, but the relative error
decreases significantly when the strike price X is inserted as a representative
average price. This is because for nodes near maturity, the kink is near where the
average price is equal to the strike price, and the piece-wise linear interpolation
is inclined to overestimate the option value around the kink.

Note that the improvement is minor when combining the AMO algorithms
[1] with our adaptive placement method. The idea of the AMO algorithm is
to derive the option values of the arithmetic average prices higher than some
threshold without incurring any interpolation error and meanwhile concentrate
representative average prices on a smaller range to further reduce the interpola-
tion error. However, for the region above the threshold, the interpolation error is
in fact very small, so our adaptive placement method already places fewer rep-
resentative average prices in the region above the threshold, and automatically
concentrates on dealing with the region below the threshold. Thus the concept
of the AMO algorithm is already nested in our adaptive placement method.
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5 Conclusion

This paper proposes the adaptive placement method to price arithmetic average
options. In our method, the representative average prices are placed effectively to
reduce the interpolation error. Numerical results show that our adaptive place-
ment method is superior to other methods in reducing interpolation error. Thus
this method can be employed to price arithmetic average options efficiently and
accurately. In fact, this novel technique can be applied to any other algorithms
with augmented state variables and the piece-wise linear interpolation approxi-
mation like GARCH option pricing algorithm in [15].
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Abstract. We consider optimal order allocation (or procurement) prob-
lems with discount pricing and fixed charges. Such a problem is faced for
example by an internet trading agent who seeks to fulfil an order for
specified amounts of several products from a pre-arranged list of suppli-
ers, taking into account availability and price. We present a mixed in-
teger programming (MILP) formulation assuming that suppliers impose
a discount schedule with multiple price breaks including fixed charges.
We show that a modified capacitated facility location problem (CFLP)
model is appropriate for the general case under consideration and outline
a Lagrangean relaxation approach improved by open and close penalties.
Our experimental results show that problems arising in practice can be
handled within seconds by either LINGO or XPress-MP software.

Keywords: Online pricing; Discount schedules; Location problems;
Branch and bound.

1 Introduction

This study is motivated by the case of a trader in pharmaceuticals over the in-
ternet who has to respond in real time to an enquiry requesting a price quotation
for specified amounts of set of products. The trader, who carries no stock, oper-
ates in a competitive market and aims to source the order at least cost from a
pre-arranged set of suppliers who operate price schedules which have been nego-
tiated with the trader in advance. Assuming that no supplier has uniformly the
best price for all products, the trader has to consider allocating (partitioning)
the order amongst the different suppliers, and the construction of an efficient
algorithm to determine the optimal breakdown of an order into component sub-
orders is the subject of this paper.

It will not in general be practicable or economic for the trader to order each
product from the supplier quoting the best price due to fixed costs that limit in
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practice the number of suppliers to be used. Suppliers commonly impose a fixed
charge to cover the costs of administration and delivery, which may be waived on
orders exceeding a certain threshold of order value. They may also give quantity
discounts depending on the order size, resulting in a discount schedule containing
a sequence of price breaks. It is understood that the enquiry will be converted
to a firm order only if the resulting price quotation is acceptable. Therefore
the trader requires an efficient algorithm to determine an optimal procurement
taking into account supplier/product list prices, availability and any applicable
discounts.

We refer to this as the buyer’s decision problem (BDP). The type of discount
we consider in this paper is known as an “all units business volume discount”
(Sadrian and Yoon, [1]) in contrast to the ”total quantity discount” structures
assumed in previous work by Goossens et al. [2]. We develop in Section 2 a basic
MILP model akin to the uncapacitated facility location (UFL) model (see e.g.
[3]) but with additional binary switches to incorporate a fixed discount structure.
We illustrate by means of a numerical example the ”buy more for less” feature of
the model. In Section 3 we extend the model to discount schedules incorporating
multiple breakpoints by the use of “pseudo-suppliers” and compare the model
to a capacitated facility location problem (CFLP) (see e.g. [4]). In Section 4 we
outline a Lagrangean heuristic and in Section 5 we provide explicit open and
close penalties useful for fathoming nodes of a branch and bound (BnB) tree.
Section 6 reports some computer experiments using LINGO and XPress-MP.
Finally Section 7 contains some concluding remarks.

2 A Basic MILP Model

We provide in this section a mixed integer linear program (MILP) formulation
for the buyer’s decision problem when each supplier has a fixed charge which is
discounted when the order value exceeds a single threshold.

Define the model parameters as follows. Let

I be the set of suppliers I = {1, .., m}
J be the set of products comprising the order J = {1, .., n}
Dj = demand (number of units) for item j (j ∈ J)
cij = unit cost for item j purchased from supplier i (i ∈ I)
fi = fixed cost for use of (opening) supplier i
Vi = value threshold for discount on fi

si = discount on fi for orders above Vi (si ≤ fi)

and for i ∈ I and j ∈ J, introduce the following decision variables :

xij number of units of product j to order from supplier i

yi =
{

1 if supplier i used
0 otherwise

zi =
{

1 if supplier i discount applies
0 otherwise
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We then formulate the buyer’s decision problem as follows:

Minimize
∑

i∈I

{
fiyi − sizi +

∑
j∈J cijxij

}

subject to
∑

i∈I xij = Dj j ∈ J (a)
xij ≤ Djyi i ∈ I, j ∈ J (b)∑

j∈J cijxij ≥ Vizi i ∈ I (c)

yi, zi ∈ {0, 1} i ∈ I (d)
xij ∈ Z+ i ∈ I, j ∈ J (e)

(BDP1)

Remarks

1. The integrality of {xij} cannot be assumed in any optimal solution to the
relaxed problem with xij ∈ R

+ as we show (see Note 1 of an example below).
2. Discounts may make it sometimes cheaper to supply more than the demand

for any product. A formulation that allows an optimal solution to exceed
demand for any product by some pre-specified margin ε is obtained by sub-
stituting for BDP1 (a),(b)

∑
i∈I xij ≥ Dj j ∈ J (a1)

xij ≤ (Dj + ε)yi i ∈ I, j ∈ J (b1)

(see Note 2 of example below).
3. A minimum order value imposed by a supplier i can be modelled by making

fi so large that this supplier will never be used without discount si being
applied.

4. The ”stockout” condition xij = 0 for some i ∈ I, j ∈ J can be modelled
by making cij large. This type of information may only be apparent after
an order from supplier i is placed, when it could be incorporated in a post-
optimality analysis.

5. Stock availability at supplier i may also be incorporated by upper bound
constraints of the form xij ≤ Sij .

Proposition 1. The binary switches yi, zi in the model BDP1 are a correct
encoding of the suppliers’ fixed cost structure.

Proof. We can prove the model is correct by considering the behaviour of the
binary switch zi for some i ∈ I for the following cases.

Case 1
If yi = 0 then xij = 0 ∀ j from BDP1 (a). Thus

∑
j∈J cijxij = 0 and so zi = 0

necessarily from BDP1 (c) since Vi > 0 . We therefore never apply the discount
when the supplier is closed.

Case 2
If yi = 1 and

∑
j∈J cijxij < Vi then zi = 0 from BDP1 (b) and no discount is

applied (as we require).
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Case 3
If yi = 1 and

∑
j∈J cijxij ≥ Vi then both zi = 0 and zi = 1 are feasible for

BDP1 (c). However the minimization objective ensures that a discount will be
applied where possible, ensuring that zi = 1 (as we require). �
Example 1. An order specifies 7 and 3 units respectively of two products P1,
P2 which may be sourced from 2 suppliers S1, S2. For “small” orders valued
less than £50 supplier S1 imposes a carriage charge of £10 while supplier S2
charges just £5. Neither supplier charges carriage on orders over £50 in value,
thus si = fi (i = 1, 2) in this example. The unit costs and demands for each
product are given in the following table, with the least cost supplier indicated for
each product:

Unit cost Surcharge Value threshold
Suppliers P1 P2 fi Vi

S1 7 6 10 50
S2 9 3 5 50

Demand 7 3

If the demand is met by a single supplier, the costs are £67 and £72 from
S1, S2 respectively. The overall minimum cost solution is achieved by sourcing
7 units of P1 and 1 unit of P2 from S1 and the remaining 2 units of P2 from
S2 at a total cost of £66. This is seen to be optimal as follows:

Ignoring fixed costs, the minimum supply (transportation) policy is

P1 P2 Value
S1 7 0 49
S2 0 3 9

Thus £58 is a lower bound on the total ”variable” cost of the order. However
fixed costs of £15 are payable with this policy giving a total cost of £73. (Note
that fixed costs cannot be avoided completely in this example since to spend more
than £50 with each supplier is clearly sub-optimal.) We then seek to avoid some
fixed costs by redistributing some amount either of P1 to S2 or of P2 to S1 in
order to cross some supplier’s threshold of minimum value.

A fixed cost saving of £10 results from transferring one unit of P2 to S1 (for
an increase of £3 in variable cost). The net saving is £7 and the resulting total
cost is £66. We note that the net saving cannot exceed £5 by removing the fixed
charge for S2. Therefore the minimum cost of supply is £66 and the optimal
supply policy is

P1 P2 Value
S1 7 1 55
S2 0 2 6

Notes

1. If the integer constraints on the supply from S1, S2 are relaxed, the optimal
fractional solution is to source 7 units of P1 and 1

6 unit of P2 from S1 and
the remaining 2 5

6units of P2 from S2 at a total cost of £63 1
2 .
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2. If the demand for P2 is cancelled, the minimum cost to supply precisely 7
units of P1 is £59 (from S1). However, a less costly solution is to exceed
the demand by supplying one unit of P2 from S1, resulting in a total cost of
£55.

3 Generalization of BDP1

We generalize the basic model to the case that supplier s ∈ S specifies a discount
schedule based on q price bands Is

k = [V s
k−1, V

s
k ), k ∈ K = {1, ..., q} with 0 =

V s
0 < V s

1 ... < V s
q . For notational convenience we consider q to be the same for

all suppliers, but in practice this need not be so. Let cs
1j be the list price per

unit of item j from supplier s and let xsj be the corresponding amount ordered.
The value of an order x = (xj) placed with supplier s is V =

∑
j∈J cs

1jxj . We
will assume that the discounted price π (x) that supplier s charges for the order
has the linear form

π (x) = fs
k + αs

kV (x)

if V (x) ∈ Ik with αs
1 = 1 and αs

k−1 ≥ αs
k, fs

k−1 ≥ fs
k , (k = 2, ..., q) being the

(generally monotonic) business value discount factors applied by supplier s.
Let xs

kjdenote the quantity of product j ordered from supplier s in some price
band k. The value of the order placed with supplier s is V s =

∑
j∈J cs

1jx
s
kj and

hence the discounted price of the order is fs
k +

∑
j∈J cs

kjx
s
kj where cs

kj = αs
kcs

1j

and k depends on the price band Is
k = [V s

k−1, V
s
k ) within which V s falls.

To reflect the fact that k is uniquely determined by the order value V s, we
define the Boolean variables {ys

k} taking the values ys
k = 1 if V s ∈ Is

k and ys
k = 0

otherwise. So as
∑

k∈K ys
k = 1, we re-label the supplier/price band pair (s, k)

as the ith pseudo-supplier and define the index set P s appropriately so that∑
i∈P s yi = 1 with I = ∪P s = {1, ..., m} .
A corresponding re-indexing of fs

k = fi, cs
kj = cij , xs

kj = xij and Is
k = [Li, Ui)

leads to the following more general formulation of the buyer’s decision problem.

minyi,xij

∑
i∈I

{
fiyi +

∑
j∈J cijxij

}

s.t.
Liyi ≤

∑
j∈J c0

ijxij ≤ Uiyi ∀i ∈ I (a)
∑

i∈P s yi ≤ 1 ∀s ∈ S (b)∑
i∈I xij ≥ Dj ∀j ∈ J (c)
yi ∈ {0, 1} ∀i ∈ I (d)
xij ∈ Z

+ ∀i ∈ I, j ∈ J (e)

(BDP2)

where

P s is the set of pseudo-suppliers i corresponding to supplier s , and
c0
ij = cs

1j is the unit list price of item j for pseudo-supplier i where i ∈ P s.
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The objective function in BDP2 is precisely that of a standard (either simple
or capacitated) plant location model. Constraints BDP2(a) ensure that the total
value of the suborder placed with pseudo-supplier i falls within pseudo-supplier
i′s price band. Note that in contrast to the usual CFLP model BDP2(a) contains
both lower and upper bounds. Constraints BDP2(b) ensure that at most one
price list per supplier can appear in an optimal solution. The demand constraints
BDP2(c) are inequalities which allow for the possibility of exceeding demand
which can sometimes, as shown by the example above, be advantageous to the
buyer and reflect the feature ”buy more-for-less” (see e.g. Goossens et al., [2]).

In practice stock limitations may restrict availability of some product j from
some supplier s, creating an upper bound on xij for each pseudo-supplier i ∈ P s.
A supplier s may also for commercial reasons wish to restrict availability of some
product j within a certain price band k. We therefore include in our formulation
of BDP2 the upper bound constraints

0 ≤ xij ≤ Sij i ∈ I, j ∈ J (UB)

for given constants {Sij}.
We observe that xij are formulated here as integer variables, but in other ap-

plications xij may be regarded as continuous, so that BDP2(e) may be replaced
by xij ∈ R

+. We also note that the formulation BDP2 contains some redundancy.
It is clear that an optimal solution will automatically employ no more than one
price band from any supplier. We can therefore technically remove all the upper
bounds in BDP2(a) and in fact we may drop all the constraints BDP2(b) from
the formulation. Retaining the additional constraints however allows tighter dual
bounds in the solution approach by Lagrangean relaxation which we outline in
the next section.

4 A Lagrangean Heuristic

Following [5], [6], [7] and [8], [9] in the context of location problems we de-
fine a Lagrangean relaxation of BDP2 by incorporating the demand constraints
BDP2(c) in the form Dj −

∑
i∈I xij ≤ 0 (j ∈ J) into the objective function with

an associated vector of Lagrange multipliers λ = (λ1,, . . . , λn) where λj ≥ 0, j ∈
J. The Lagrangean Dual Problem (LDP) corresponding to BDP2 can then be
stated as

LDP: max
λ≥0

F (λ)

where

F (λ) = min
yi,xij

⎧
⎨

⎩

m∑

i=1

fiyi +
m∑

i=1

n∑

j=1

(cij − λj) xij +
n∑

j=1

Djλj

⎫
⎬

⎭
(LD)

subject to BDP2 and UB.
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At any node of the BnB tree we consider a partition of I, the index set of
{yi} , into sets K0, K1, K2 such that

yi = 0, i ∈ K0, yi = 1, i ∈ K1, yi ∈ {0, 1} , i ∈ K2

That is K0, K1 are the pseudo-suppliers fixed closed, open respectively; K2
are the undetermined pseudo-suppliers. Letting PL = |K1| and PU = |K1 ∪ K2|
we obtain explicit cardinality bounds

PL ≤
m∑

i=1

yi ≤ PU (CB)

on the total number of actual suppliers used.
The solution to the subproblem of LDP for prescribed λ can be achieved by

solving two knapsack problems. The first knapsack problem is defined for each
non-closed pseudo-supplier i ∈ K1 ∪ K2 and determines the contribution to the
dual function (LD) from pseudo-supplier i if open :

αi (λ) = fi + min
xij

n∑

j=1

(cij − λj)xij (KP1)

subject to BDP2(a),(e) and UB. We solve the continuous relaxation of this prob-
lem by a greedy heuristic, first ordering {xij}j∈J by non-decreasing value of the
ratio (cij − λj) /c0

ij then setting the components of the solution x∗
ij in turn to

their maximum value subject to BDP2(a) and UB.
The second knapsack problem is a minimization problem on the set of Boolean

variables {yi}i∈I

F (λ) = min
yi

∑

i∈K2

αi (λ) yi +
∑

i∈K1

αi (λ) +
∑

j∈J

Djλj (KP2)

subject to BDP2(b),(d) and CB. The solution procedure is briefly outlined. For
each supplier s, let βs = mini∈P s∩K2 {αi (λ)} and form the corresponding list of
pseudo-suppliers i1, i2, . . . in non-decreasing order of βs. Define the sequence of
partial sums {St} by

S0 =
∑

i∈K1

αi (λ) +
n∑

j=1

Djλj ,

S1 = S0 + αi1 (λ) ,

...
St = St−1 + αit (λ) .

The smallest value of St∗ such that PL ≤ t∗ ≤ PU provides an optimal solution
y∗ to (KP2) and hence the solution to (LD) subject to the given constraints. Let
ZU be the value of the incumbent i.e. of the best feasible solution found so far.
We decide the branch is fathomed if St∗ ≥ ZU , otherwise we continue to develop
this node.
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5 Open and Close Penalties

Rules that seek to determine whether each yi variable can be fixed at 0 or 1 in
subsequent branchings from a node of a BnB tree were developed by Khumawala
et al. [10] for the CFLP. Many authors including Beasley [7], Wu et al. [9],
Klose et al. [11] have employed such rules in Lagrangean heuristics for location
problems (see Sridaran [12] for a review). We provide explicit expressions in this
section for the so-called open and close penalties appropriate to the model BDP2
(see Chan [13]).

Let M∗ denote the set of pseudo-suppliers that have y∗
i = 1 in the solution

St∗ to the Lagrangean subproblem of LDP.

5.1 Close Penalties

For an open pseudo-supplier i ∈ K2 ∩ M∗, consider the change in F (λ), say
ΔF (λ)|yi=0, as a result of setting yi = 0. Let αmin be the smallest value of
α

l
(λ) with l ∈ K2\M∗ such that pseudo-supplier l can be feasibly opened in

the solution to LDP. If closing i causes the lower limit on cardinality of M∗

to be violated, l is forced to enter M∗. Otherwise forcing pseudo-supplier i
closed allows l to be opened if St∗ is reduced as a result. As a result of these
considerations the increase in F (λ) due to closing i is

ΔF (λ)|yi=0 =
{

−αi (λ) + αmin, if |M∗| = PL

−αi (λ) + min {0, αmin} , if |M∗| > PL
(C)

If F (λ) + ΔF (λ)|yi=0 ≥ ZU we discard the current subproblem with yi = 0
added and fix yi = 1 in all subsequent completions of this branch, i.e. we transfer
i from K2 to K1.

5.2 Open Penalties

For each closed pseudo-supplier i ∈ K2\M∗, we calculate the change ΔF (λ)|yi=1
in F (λ) as a result of setting yi = 1. We need to distinguish between three cases.

Case 1: i ∈ Ps and supplier s is already represented in M∗ by some pseudo-
supplier l with y∗

l = 1 (i.e. Ps is already open in y∗ at some other level of
discount). This case results in a forced exchange of i with l.

Case 2: Opening pseudo-supplier i violates the upper limit on cardinality of
M∗, then some open pseudo-supplier l ∈ K2\M∗, say, must be closed.

Case 3: Opening pseudo-supplier i allows the possibility that some supplier
l ∈ K2\M∗ be closed.

Let αmax be the maximum of αl (λ) over l ∈ K2 ∩ M∗. The net change in
F (λ) can be summarized as:

ΔF (λ)|yi=1 =

⎧
⎨

⎩

αi (λ) − αl (λ) , if Ps is open at l
αi (λ) − αmax, if |M∗| = PU

αi (λ) − max {0, αmax} , otherwise
(O)
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If f (λ) + ΔF (λ)|yi=1 ≥ ZU we fix yi = 0 in all subsequent completions from
this node and transfer i from K2 to K0.

6 Experiments with LINGO and Xpress-MP

We have evaluated the ability of standard commercial software to solve rela-
tively small scale examples which however are typical of some real-world appli-
cations. We used the basic formulation BDP1 assuming a single price break for
each supplier. Test data were generated using pseudo-random numbers to mimic
real data (see [14] for further details). Prices were generated by superimposing
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normally distributed variation onto a set of uniformly distributed base prices
and orders were simulated using an integer uniform distribution.

Two sets of experiments were performed to compare LINGO and Xpress-MP.
In the first set, the number of suppliers was fixed at 10 while the number of
products was increased from 5 to 35. Graphs are shown below of the average
solution time and memory used for 30 orders randomly generated at each ex-
perimental point. In all cases the same solution was reached by both packages
within a second. The solution times for LINGO were slightly higher than for
Xpress-MP, however Xpress-MP used more memory.
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In the second set of experiments, the number of products was fixed at 10 and
the number of suppliers varied between 10 and 40. Again 30 order instances were
generated. and the average time taken to solve to optimality and the average
memory usage were compared. Xpress-MP solved the 40 suppliers instances in an
average time of less than 1 second, while LINGO took over 5 seconds on average.
Xpress-MP’s greater solution efficiency was perhaps related to its greater use of
memory.

7 Summary and Future Research Directions

We have shown that an order allocation problem typically faced by trading
intermediaries on the internet may be formulated as a mixed integer linear pro-
gram (MILP) resembling a capacitated location problem, in which the capacities
depend on pre-specified thresholds of order values. A Lagrangean heuristic is de-
veloped and explicit formulae for open and close penalties are provided. Our
computational study using LINGO and XPress-MP show that many practically
interesting instances are handled within seconds on a standard PC.

Example 1 (see Section 2) suggests that it may be possible to develop an
effective rearrangement heuristic to determine a minimum cost order either ex-
actly or approximately. We plan to investigate such a heuristic and perform
computational experiments to examine whether such a heuristics can improve
the performance of existing software. The algorithms developed and tested in
this paper employ a depth first search (DFS) scheme. Such schemes economize
on memory. However best first search (BFS) schemes are more useful if we wish
to generate the minimum number of subproblems. The open and close penalties
developed in this paper can easily be implemented for branch and bound (BnB)
algorithms using BFS and it may be interesting to compare the efficiency of BnB
algorithms for BDP developed using a BFS scheme.
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Abstract. For fixed integers k ≥ 3 and hypergraphs G on N vertices,
which contain edges of cardinalities at most k, and are uncrowded, i.e.,
do not contain cycles of lengths 2, 3, or 4, and with average degree for
the i-element edges bounded by O(T i−1 · (ln T )(k−i)/(k−1)), i = 3, . . . , k,
for some number T ≥ 1, we show that the independence number α(G)
satisfies α(G) = Ω((N/T ) · (ln T )1/(k−1)). Moreover, an independent set
I of size |I | = Ω((N/T ) · (lnT )1/(k−1)) can be found deterministically in
polynomial time. This extends a result of Ajtai, Komlós, Pintz, Spencer
and Szemerédi for uncrwoded uniform hypergraphs. We apply this result
to a variant of Heilbronn’s problem on the minimum area of the convex
hull of small sets of points among n points in the unit square [0, 1]2.

1 Introduction

An independent set I in a graph or hypergraph G = (V, E) with vertex-set V
and edge-set E is a subset of the vertex-set V , which does not contain any edges,
i.e., E �⊆ I for each edge E ∈ E . The largest size of an independent set in G
is the independence number α(G). For graphs G = (V, E) with average degree
t := 2 · |E|/|V | ≥ 1 Turán’s theorem gives α(G) ≥ |V |/(2 · t). Turán’s theorem
for hypergraphs says, see [20]: If G = (V, Ek) is a k-uniform hypergraph, i.e.,
all edges have cardinality k, with average degree tk−1 := k · |Ek|/|V | ≥ 1, then
α(G) ≥ ((k − 1)/k) · (|V |/t). An independent set I ⊆ V in G achieving this lower
bound can be found deterministically in time O(|V | + |Ek|). For uncrowded k-
uniform hypergraphs G = (V, Ek), i.e., G contains no cycles of length 2, 3, or 4,
Ajtai, Komlós, Pintz, Spencer and Szemerédi [1] improved this lower bound by a
factor of Θ((log t)1/(k−1)). Several applications of this result have been found, see
[5]. Here we extend this result from [1] to non-uniform uncrowded hypergraphs:

Theorem 1. Let k ≥ 3 be a fixed integer. Let G = (V, E3 ∪ · · · ∪ Ek) be an
uncrowded hypergraph on |V | = N vertices, where Ei is the set of all i-element
edges in G, such that the average degrees ti−1

i := i · |Ei|/|V | for the i-element
edges satisfy ti−1

i ≤ ci · T i−1 · (ln T )(k−i)/(k−1) for some number T ≥ 1 with
constants ci, where 0 < ci < 1/8 ·

(
k−1
i−1

)
/(10(3(k−i))/(k−1) · k2), i = 3, . . . , k.

Then, for some constant Ck > 0 the independence number α(G) satisfies

α(G) ≥ Ck · (N/T ) · (ln T )1/(k−1). (1)

M.-Y. Kao and X.-Y. Li (Eds.): AAIM 2007, LNCS 4508, pp. 285–295, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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An independent set I ⊆ V with |I| = Ω((N/T ) · (ln T )1/(k−1)) can be found
deterministically in time o(N · T 4k−4).

The corresponding result also holds for linear hypergraphs G, which have the
property that they do not contain cycles of length 2, i.e., each two distinct
edges have at most one vertex in common, provided that G does not contain
any 2-element edges. Theorem 1 is best possible up to a constant factor for a
certain range k < T < N , as can be seen by considering random non-uniform
hypergraphs G = (V, E3 ∪ · · · ∪ Ek) on |V | = N vertices.

As an application we consider a variant of Heilbronn’s problem for the convex
hull of sets of points in the unit square [0, 1]2. The original problem of Heilbronn
asks for a distribution of n points in [0, 1]2 such that the minimum area of a
triangle determined by three of these n points achieves its largest value. For
this problem, the points 1/n · (i mod n, i2 mod n), i = 0, . . . , n − 1, where n is
a prime, give the lower Ω(1/n2) on the minimum area of a triangle. This lower
bound has been improved in [12] by a factor Ω(log n), see [6] for a deterministic
polynomial time algorithm. Upper bounds on the minimum area of a triangle
among n points in [0, 1]2 were given by Roth [15,16,17,18] and Schmidt [19] and,
the currently best upper bound O(2c

√
log n/n8/7), c > 0 a constant, is due to

Komlós, Pintz and Szemerédi [11].
Variants of Heilbronn’s triangle problem in higher dimensions were inves-

tigated in [2,3,4,7,8,13]. A generalization of Heilbronn’s triangle problem to
k points, see Schmidt [19], asks, given an integer k ≥ 3, for the supremum
Δk(n) over all distributions of n points in [0, 1]2 of the minimum area of the
convex hull determined by some k of n points. In [6] it has been shown that
Δk(n) = Ω(1/n(k−1)/(k−2)) for fixed k ≥ 3, and any integers n ≥ k; for
k = 4 this was proved in [19]. This has been improved in [14] to Δk(n) =
Ω((log n)1/(k−1)//n(k−1)/(k−2)) for fixed k ≥ 3. Currently, for k ≥ 4 only the
upper bound Δk(n) = O(1/n) is known.

Here we show for fixed integers k ≥ 3, that one can achieve these lower bounds
simultaneously for j = 3, . . . , k by a single configuration of n points in [0, 1]2.

Theorem 2. Let k ≥ 3 be a fixed integer. For integers n ≥ k there exists a
configuration of n points in [0, 1]2, such that, simultaneously for j = 3, . . . , k, the
area of the convex hull of any j of the n points is Ω((log n)1/(j−1)/n(j−1)/(j−2)).

By considering the standard L × L-grid for a suitable integer L ≥ n one can
also give a polynomial time algorithm which achieves the lower bounds from
Theorem 2 on the areas of the convex hulls. (Details are omitted.)

2 Uncrowded and Linear Hypergraphs

Definition 1. A hypergraph is a pair G = (V, E) with vertex-set V and edge-
set E, where E ⊆ V for each edge E ∈ E. For a hypergraph G the notation
G = (V, E2 ∪ · · · ∪ Ek) indicates that Ei is the set of all i-element edges in G,
i = 2, . . . , k. For a vertex v ∈ V let di(v) denote the number of i-element edges
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E ∈ Ei which contain v, i.e., di(v) is the degree of v for the i-element edges in
G. The independence number α(G) of G = (V, E) is the largest size of a subset
I ⊆ V which contains no edges from E. A j-cycle in a hypergraph G = (V, E)
is a sequence E1, . . . , Ej of distinct edges from E, such that Ei ∩ Ei+1 �= ∅,
i = 1, . . . , j − 1, and Ej ∩ E1 �= ∅, and a sequence v1, . . . , vj of distinct vertices
with vi+1 ∈ Ei ∩ Ei+1, i = 1, . . . , j − 1, and v1 ∈ E1 ∩ Ej. An unordered pair
{E, E′} of distinct edges E, E′ ∈ E with |E ∩ E′| ≥ 2 is a 2-cycle. A 2-cycle
{E, E′} in G = (V, E2 ∪ · · · ∪ Ek) with E ∈ Ei and E′ ∈ Ej is called (2; (g, i, j))-
cycle if and only if |E ∩ E′| = g, 2 ≤ g ≤ i ≤ j but g < j. The hypergraph G is
called linear if it does not contain any 2-cycles, and G is called uncrowded if it
does not contain any 2-, 3-, or 4-cycles.

For uncrowded k-uniform hypergraphs with average degree tk−1 the Turán bound
on the independence number has been improved in [1] by a factor Θ((log t)1/(k−1)),
see [5] and [10] for a deterministic polynomial time algorithm.

Theorem 3. Let k ≥ 3 be a fixed integer. Let G = (V, Ek) be an uncrowded
k-uniform hypergraph on |V | = N vertices and with average degree tk−1 :=
k · |Ek|/N . Then, for some constant Ck > 0, the independence number α(G)
satisfies α(G) ≥ Ck · (N/t) · (log t)1/(k−1).

To prove Theorem 3, in [1] the following central lemma has been used to con-
struct iteratively a large independent set in a hypergraph, which we use in our
arguments too; see [10] for a deterministic polynomial time algorithm.

Lemma 1. Let T and N be large positive integers. Let s be an integer with
0 ≤ s ≤ (ln T )/102. Let ws := (s + 1)1/(k−1) − s1/(k−1) and ε := 10−6/ ln T . Let
N/(2 · es) ≤ n ≤ N/es and T/(2 · es) ≤ t ≤ T/es.

Let G = (V, E2 ∪ · · · ∪ Ek) be an uncrowded hypergraph with |V | = n vertices,
where for each vertex v ∈ V the degrees di(v) for the i-element edges satisfy
di(v) ≤

(
k−1
i−1

)
· s(k−i)/(k−1) · ti−1, i = 2, . . . , k.

Then, one can find in time O(n · t4(k−1)) an independent set I ⊆ V in G, a
subset V ∗ ⊂ V with V ∗ ∩ I = ∅, and a hypergraph G∗ = (V ∗, E∗

2 ∪ · · · ∪ E∗
k ) such

that

(i) α(G) ≥ |I| + α(G∗) and (ii) |I| ≥ 0.99 · n·ws

e·t and (iii) |V ∗| ≥ n·(1−ε)
e

(iv) d∗i (v) ≤
(
k−1
i−1

)
·(s+1)(k−i)/(k−1) ·(t·(1+ε)/e)i−1 for each vertex v ∈ V ∗, where

d∗i (v) denotes the degree of v for the i-element edges in G∗, i = 2, . . . , k.

Lemma 2. Let k ≥ 3 be a fixed integer. Let G = (V, E2 ∪ · · · ∪ Ek) be a hy-
pergraph with |V | = N and N ≥ 65 · (ln k)1000/998, where the average de-
grees ti−1

i := i · |Ei|/N for the i-element edges in Ei fulfill ti−1
i ≤ ci · T i−1 ·

(ln T )(k−i)/(k−1) for some number T ≥ 1 and for some constants ci > 0 with
ci < 1/8 ·

(
k−1
i−1

)
/(10(3(k−i))/(k−1) · k2), i = 2, . . . , k.

Then, for s := 10−3 · ln T , one can find in time O(|V |+
∑k

i=2 |Ei|) an induced
subhypergraph G∗ = (V ∗, E∗

2 ∪· · ·∪E∗
k ) on |V ∗| = n vertices with E∗

i := Ei ∩ [V ∗]i,



288 H. Lefmann

i = 2, . . . , k, such that (3/4) · N/es ≤ n ≤ N/es and for each vertex v ∈ V ∗ the
degrees d∗i (v) for the i-element edges in G∗ satisfy

d∗i (v) ≤
(

k − 1
i − 1

)

· s
k−i
k−1 · (T/es)i−1. (2)

Proof. We pick vertices with probability p := 1/es uniformly at random and
independently of each other from the vertex-set V in G. Let V ∗ be the random
set of chosen vertices of expected size E[|V ∗|] = p · N . With s = 10−3 · ln T and
T = O(N), we have by Chernoff’s inequality for N ≥ 65 · (ln k)1000/998:

Prob (E[|V ∗|] − |V ∗| > N/(8 · es)) ≤ e−
N2/(64·e2s)

N = e−N/(64·e2s) < 1/k .(3)

Let E∗
i := Ei ∩ [V ∗]i, i = 2, . . . , k, and let G∗ = (V ∗, E∗

2 ∪ · · · ∪ E∗
k ) be the on V ∗

induced random subhypergraph of G. For i = 2, . . . , k, we have for the expected
numbers E[|E∗

i |] = pi · |Ei| = pi ·N ·ti−1
i /i ≤ pi ·ci ·T i−1 ·(ln T )(k−i)/(k−1) ·N/i. By

Markov’s inequality it is Prob (|E∗
i | > k · E[|E∗

i |]) ≤ 1/k, hence with (3) there
exists a subhypergraph G∗ = (V ∗, E∗

2 ∪ · · · ∪ E∗
k ) of G such that for i = 2, . . . , k:

|V ∗| ≥ (7/8) · N/es and |E∗
i | ≤ k · pi · ci · T i−1 · (ln T )(k−i)/(k−1) · N/i. (4)

Let ni be the number of vertices v ∈ V ∗ with degree d∗i (v) ≥ 8 · es · k2 · pi ·
ci · T i−1 · (ln T )(k−i)/(k−1) for the i-element-edges in G∗, i = 2, . . . , k. By (4) we
infer ni ≤ N/(8 · k · es) ≤ |V ∗|/(7 · k), thus

∑k
i=2 ni < |V ∗|/7. We delete these

vertices from V ∗ and obtain a subset V ∗∗ ⊆ V ∗ with |V ∗∗| ≥ (6/7) · |V ∗|. For the
induced subhypergraph G∗∗ = (V ∗∗, E∗∗

2 ∪· · ·∪E∗∗
k ) of G∗ with E∗∗

i := Ei ∩ [V ∗∗]i,
i = 2, . . . , k, we infer with (4) for each vertex v ∈ V ∗∗:

|V ∗∗| ≥ (3/4) · N/es and d∗∗i (v) ≤ 8 · k2 · ci · (T/es)i−1 · (ln T )(k−i)/(k−1),

where d∗∗i (v) is the degree of v for the i-element edges in G∗∗. For s := 10−3 · ln T
and ci < 1/8 ·

(
k−1
i−1

)
/(10(3(k−i))/(k−1) · k2), i = 2, . . . , k, we have

d∗∗i (v) ≤ 8 · k2 · ci · (T/es)i−1 · (ln T )
k−i
k−1 ≤

(
k − 1
i − 1

)

· s
k−i
k−1 · (T/es)i−1,

which proves (2). By possibly deleting some more vertices and all incident edges
we obtain (3/4) · N/es ≤ |V ∗∗| ≤ N/es. This probabilistic argument can be
derandomized by using the method of conditional probabilities and yields a
deterministic algorithm with running time O(|V | +

∑k
i=2 |Ei|). ��

We prove Theorem 1 with an approach similar to that in [1]. The difference
between their arguments and ours is, that we do not apply Lemma 1 step by step
from the beginning, but use first Lemma 2 to jump to a suitable subhypergraph:

Proof. Apply Lemma 2 with s := 10−3 · ln T to the hypergraph G = (V, E2 ∪· · ·∪
Ek) on N vertices and obtain an induced subhypergraph Gs−1 := (Vs−1, E2;s−1 ∪
· · ·∪Ek;s−1) on n vertices with Ei;s−1 := Ei∩[Vs−1]i, i = 2, . . . , k, and with (3/4)·
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N/es ≤ n ≤ N/es, and for each vertex v ∈ Vs−1 its degree di;s−1(v) in Gs−1 for
the i-element edges in Ei;s−1 satisfies di;s−1(v) ≤

(
k−1
i−1

)
· s(k−i)/(k−1) · (T/es)i−1.

Set ns−1 := n and ts−1 := T/es. By iteratively applying Lemma 1 as in [1] with
ε := 10−6/ ln T to the hypergraphs Gr−1, we obtain for r = s, . . . , 10−2 · ln T
independent sets Ir ⊆ Vr−1 and hypergraphs Gr = (Vr, E2;r ∪ · · · ∪ Ek;r) with
|Vr| = nr, where (3/4) · N · (1 − ε)r+1−s/er+1 ≤ nr ≤ N/er+1 with numbers
tr ≤ T · (1 + ε)r+1−s/er+1, such that

α(Gr) ≥ |Ir| + α(Gr+1) and |Ir| ≥ (0.99 · nr−1 · wr)/(e · tr−1)
|Vr| ≥ (nr−1 · (1 − ε))/e

di;r(v) ≤
(

k − 1
i − 1

)

· (r + 1)
k−i
k−1 · (tr)i−1

for each v ∈ Vr , where di;r(v) is the degree for the i-element edges in Gr of v.
With (1 + ε)n > 1 + ε · n, 1 + ε ≤ eε, r ≤ 10−2 · ln T and ε = 10−6/ lnT we

have

nr

tr
≥ (3/4) · N · (1 − ε)r+1−s/er+1

T · (1 + ε)r+1−s/er+1 ≥ (3/4) · N

T
· (1 − ε)r

(1 + ε)r
≥ 0.74 · N

T
.

Hence, with wr = (r + 1)1/(k−1) − r1/(k−1) and s = 10−3 · ln T , we obtain for
some constant Ck > 0 an independent set I = Is ∪ · · · ∪ I(ln T )/102 in G with

α(G) ≥ |I| =
(lnT )/102

∑

r=s

|Ir| ≥ 0.99 · 0.74
e

· N

T
·
(lnT )/102

∑

r=s

wr ≥

≥ 0.73
e

· N

T
·
(ln T )/102

∑

r=s

((r + 1)
1

k−1 − r
1

k−1 ) ≥ Ck · N

T
· (ln T )

1
k−1 ,

which gives the lower bound (1) in Theorem 1. The time bound for the cor-
responding deterministic algorithm can be estimated as follows: Lemma 2 is
applied in time O(|V | +

∑k
i=2 |Ei|) and all applications of Lemma 1 are done in

time O(
∑(lnT )/102

r=(lnT )/103((N/er) · (T · (1 + ε)r+1−s/er+1)4(k−1))) = o(N · T 4(k−1)),
compare Lemma 1, hence we have the time bound o(N · T 4(k−1)). ��

In [9] it has been shown that one may relax in Theorem 3 the assumptions: it
suffices to have a linear hypergraph. Similarly, one can show:

Theorem 4. Let k ≥ 3 be a fixed integer. Let G = (V, E3 ∪ · · · ∪ Ek) be a linear
hypergraph with |V | = N such that the average degrees ti−1

i := i · |Ei|/|V | for
the i-element edges satisfy ti−1

i ≤ ci · T i−1 · (ln T )(k−i)/(k−1) for some number
T ≥ 1, where ci > 0 are constants with ci < 1/32 ·

(
k−1
i−1

)
/(10(3(k−i))/(k−1) · k6),

i = 3, . . . , k.
Then, for some constant Ck > 0, one can find deterministically in time O(N ·

T 4k−2) an independent set I ⊆ V such that |I| = Ω((N/T ) · (ln T )1/(k−1)).
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3 Areas of the Convex Hull of j Points

For distinct points P, Q ∈ [0, 1]2 let PQ denote the line through P and Q,
and let [P, Q] be the segment between P and Q. Let dist (P, Q) denote the
Euclidean distance between the points P and Q. For points P1, . . . , Pl ∈ [0, 1]2

let area (P1, . . . , Pl) be the area of the convex hull of P1, . . . , Pl. A strip centered
at the line PQ of width w is the set of all points in R

2, which are at Euclidean
distance at most w/2 from the line PQ. We define a lexicographic order ≤lex on
the unit square [0, 1]2: for points P = (px, py) ∈ [0, 1]2 and Q = (qx, qy) ∈ [0, 1]2

let P ≤lex Q :⇐⇒ (px < qx) or (px = qx and py < qy).

Lemma 3. (a) Let P1, . . . , Pl ∈ [0, 1]2, l ≥ 3, be points. If area (P1, . . . , Pl) ≤
A, then for any distinct points Pi, Pj every other point Pk, k �= i, j, is con-
tained in a strip centered at the line PiPj of width 4 · A/dist (Pi, Pj).

(b) Let P, R ∈ [0, 1]2 be distinct points with P ≤lex R. Then all points Q ∈
[0, 1]2 with P ≤lex Q ≤lex R and area (P, Q, R) ≤ A are contained in a
parallelogram of area 4 · A.

In the following we prove Theorem 2.

Proof. Let k ≥ 3 be a fixed and let n ≥ k be any integer. For a constant β > 0,
which will be specified later, we select uniformly at random and independently
of each other N := n1+β points P1, . . . , PN in [0, 1]2. Set D0 := N−γ for a
constant γ with 0 < γ < 1 and let A3, . . . , Ak > 0 be numbers, which will be
fixed later. We form a random hypergraph G = (V, E2 ∪ · · · ∪ Ek) with vertex-set
V = {1, . . . , N}, where vertex i ∈ V corresponds to the random point Pi ∈
[0, 1]2, and with edges of cardinality at most k. Let {i1, i2} ∈ E2 if and only if
dist(Pi1 , Pi2) ≤ D0. Moreover, for j = 3, . . . , k, let {i1, . . . , ij} ∈ Ej if and only
if area (Pi1 , . . . , Pij ) ≤ Aj and {i1, . . . , ij} does not contain any edges from E2.

We want to find a large independent set I ⊆ V in G, as I yields a subset
P (I) ⊆ [0, 1]2 of size |I| such that the area of the convex hull of each j distinct
points, j = 3, . . . , k, from P (I) is bigger than Aj . To do so, first we estimate the
expected numbers E[|Ej |] of j-element edges and E[s2;(g,i,j)(G)] of (2; (g, i, j))-
cycles in G, and we prove that these numbers are not too big. Then we show the
existence of a certain induced, linear subhypergraph G∗ = (V, E∗

3 ∪ · · · ∪ E∗
k ) (no

2-element edges anymore) of G, which satisfies the assumptions of Theorem 4,
and then we obtain a large independent set.

Lemma 4. For j = 3, . . . , k, there exist constants cj > 0 such that

E[|Ej |] ≤ cj · Aj−2
j · N j. (5)

Proof. For integers i1, . . . , ij with 1 ≤ i1 < · · · < ij ≤ N we estimate the
probability Prob (area (Pi1 , . . . , Pij ) ≤ Aj). We may assume that Pi1 ≤lex

· · · ≤lex Pij . Then area (Pi1 , . . . , Pij ) ≤ Aj implies area (Pi1 , Pig , Pij ) ≤ Aj

for g = 2, . . . , j − 1. The points Pi1 and Pij with Pi1 ≤lex Pij may be anywhere
in [0, 1]2. Given Pi1 , Pij ∈ [0, 1]2, by Lemma 3(b) all points Pig , g = 2, . . . , j − 1,
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are contained in a parallelogram of area 4 · Aj , which happens with probability
at most (4 · Aj)j−2. As there are

(
N
j

)
choices for j out of N points, for some

constants cj > 0, j = 3, . . . , k, we obtain E[|Ej |] ≤ cj · Aj−2
j · N j . ��

Next we estimate the expected numbers E[s2;(g,i,j)(G)] of (2; (g, i, j))-cycles, 2 ≤
g ≤ i ≤ j ≤ k but g < j, in G = (V, E2 ∪ · · · ∪ Ek).

Lemma 5. Let 2 ≤ g ≤ i ≤ j ≤ k with i ≥ 3 and g < j, and let 0 < A3 ≤ · · · ≤
Ak. Then, there exist constants c2;(g,i,j) > 0 such that for D2

0 ≥ 2 · Aj it is

E[s2;(g,i,j)(G)] ≤ c2;(g,i,j) · Ai−2
i · Aj−g

j · N i+j−g · (log N)3. (6)

Proof. We estimate the probability that (i + j − g) points, which are chosen
uniformly at random and independently of each other in [0, 1]2, form sets of
i and j points with areas of the convex hulls at most Ai and Aj , respectively,
conditioned on the event that distinct points have Euclidean distance bigger than
D0. Both sets have g points in common, say P1, . . . , Pg, where P1 ≤lex · · · ≤lex

Pg. Let the sets of i and j points be P1, . . . , Pi and P1, . . . , Pg, Qg+1, . . . , Qj with
area (P1, . . . , Pi) ≤ Ai and area (P1, . . . , Pg, Qg+1, . . . , Qj) ≤ Aj , respectively.

The point P1 may be anywhere in [0, 1]2. Given P1 ∈ [0, 1]2, we have Prob (r ≤
dist (P1, Pg) ≤ r + dr) ≤ π · r dr. Given P1, Pg ∈ [0, 1]2 with dist (P1, Pg) = r,
by Lemma 3(b) all points P2, . . . , Pg−1 are contained in a parallelogram with
area 4 · Ai, which happens with probability at most (4 · Ai)g−2.

Given P1, . . . , Pg ∈ [0, 1]2 with dist (P1, Pg) = r, by Lemma 3(a) all points
Pg+1, . . . , Pi are contained in a strip Si of width w = 4 · Ai/r, and all points
Qg+1, . . . , Qj are contained in a strip Sj of width w = 4 ·Aj/r, where both strips
are centered at the line P1Pg. Set S∗

i := Si ∩ [0, 1]2 and S∗
j := Sj ∩ [0, 1]2, which

have areas at most 4 ·
√

2 · Ai/r and 4 ·
√

2 · Aj/r, respectively.
For the convex hulls of P1, . . . , Pi and P1, . . . , Pg, Qg+1, . . . , Qg we denote their

extremal points by P ′, P ′′ and Q′, Q′, respectively, i.e., P ′, P ′′ ∈ {P1, . . . , Pi} and
Q′, Q′′ ∈ {P1, . . . , Pg, Qg+1, . . . , Qj} and, say P ′ ≤lex P ′′ and Q′ ≤lex Q′′, it is
P ′ ≤lex P1, . . . , Pi ≤lex P ′′ and Q′ ≤lex P1, . . . , Pg, Qg+1, . . . , Qj ≤lex Q′′.

Given P1 ≤lex · · · ≤lex Pg, there are three possibilities each for the convex
hulls of P1, . . . , Pi and P1, . . . , Pg, Qg+1, . . . , Qj : extremal are (i) P1 and Pg, or
(ii) only one point, P1 or Pg, or (iii) none of P1 and Pg.

Consider the convex hull of the points P1, . . . , Pi. In case (i), given P1, . . . , Pg ∈
[0, 1]2 with dist (P1, Pg) = r, as in the proof of Lemma 4 we infer

Prob (area (P1, . . . , Pi) ≤ Ai | P1, . . . , Pg ; case (i)) ≤ (4 · Ai)i−g. (7)

In case (ii), either P1 or Pg is extremal for the convex hull of P1, . . . , Pi. By
Lemma 3(a), the second extremal point is contained in the set S∗

i , which happens
with probability at most 4·

√
2·Ai/r. Given both extremal points P ′, P ′′ ∈ [0, 1]2,

by Lemma 3(b) all points Pg+1, . . . , Pi �= P ′, P ′′ are contained in a parallelogram
of area 4 · Ai, hence, with dist (P1, Pg) = r we infer

Prob(area(P1, . . . , Pi) ≤ Ai | P1, . . . , Pg ; case (ii)) ≤ ((4 · Ai)i−g ·
√

2)/r.(8)
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In case (iii) neither point P1 nor Pg is extremal for the convex hull of P1, . . . , Pi.
With area (P1, . . . , Pi) ≤ Ai, by Lemma 3(a) both extremal points P ′ and P ′′, say
P ′ ≤lex P1 ≤lex Pg ≤lex P ′′, are contained in the strip Si of width 4 ·Ai/r, which
is centered at the line P1Pg. Given P1 ∈ [0, 1]2, the probability that dist (P1, P

′) ∈
[s, s+ ds] is at most the difference of the areas of the balls with center P1 and with
radii (s+ ds) and s, respectively, intersected with the strip Si. Since distinct points
have Euclidean distance bigger than D0, we have r, s > D0. A circle with center
P1 and radius s > D0 intersects both boundaries of the strip Si of width 4 · Ai/r
in four points R ≤lex R′ and R′′ ≤lex R′′′, where R, R′ are on one boundary
of the strip Si and R′′, R′′′ are on the other boundary. To see this, notice that
s > 2 · Ai/r follows from r, s > D0 and D2

0 > 2 · Aj ≥ 2 · Ai. Let ε(s) be the
angle between the lines P1R and P1R

′′. Then, by using ε/2 ≤ sin ε for ε ≤ π/2
and sin(ε(s)/2) = 2 · Ai/(r · s) < 2 · Ai/D2

0 ≤ 1, we infer

Prob (dist (P1, P
′) ∈ [s, s + ds] | P1) ≤ ((2 · ε(s)))/(2 · π) · 2 · π · s ds ≤

≤ 8 · sin(ε(s)/2) · s ds = (16 · Ai/r) ds .

Given P ′ ∈ [0, 1]2 with dist (P1, P
′) = s, the second extremal point P ′′ ∈ [0, 1]2

is contained in a strip centered at the line P1P
′ of width 4 · Ai/s, which occurs

with probability at most 4 ·
√

2 ·Ai/s. Given both points P ′, P ′′, by Lemma 3(b)
all points Pg+1, . . . , Pi �= P ′, P ′′ are contained in a parallelogram of area 4 · Ai.
Hence, given P1, . . . , Pg ∈ [0, 1]2, with s > D0 = N−γ and γ > 0, we infer:

Prob (area (P1, . . . , Pi) ≤ Ai | P1, . . . , Pg ; case (iii))

≤ (4 · Ai)i−g ·
∫ √

2

D0

4 ·
√

2
r · s ds =

√
32 · (4 · Ai)i−g · ln

√
2 + γ · ln N

r
. (9)

Summarizing cases (i–iii) with (7)–(9), and r ≤
√

2 and 0 < γ < 1 we obtain:

Prob (area (P1, . . . , Pi) ≤ Ai | P1, . . . , Pg)

≤ (4 · Ai)i−g ·
√

8 +
√

8 · (ln 2 + 2 · γ · ln N)
r

≤ (4 · Ai)i−g · 11 · ln N

r
. (10)

Similarly, it follows Prob (area (P1, . . . , Pg, Qg+1, . . . , Qg) ≤ Aj | P1, . . . , Pg) ≤
((4 · Aj)j−g · 11 · ln N)/r holds. Hence, we obtain for constants c∗2;(g,i,j) > 0:

Prob (P1, . . . , Pi and P1, . . . , Pg, Qg+1, . . . , Qj is a (2; (g, i, j))-cycle) ≤

≤
∫ √

2

D0

(4 · Ai)g−2 ·
(

(4 · Ai)i−g · 11 · ln N

r

)

·
(

(4 · Aj)j−g · 11 · ln N

r

)

· π · r dr

≤ c∗2;(g,i,j) · Ai−2
i · Aj−g

j · (log N)3 as D0 = N−γ , γ > 0 is constant. (11)

There are
(

N
i+j−g

)
choices for i + j − g out of N points, hence for constants

c2;(g,i,j) > 0, j = 2, . . . , k − 1, we get with (11) the upper bound:

E[s2;(g,i,j)(G)] ≤ c2;(g,i,j) · Ai−2
i · Aj−g

j · N i+j−g · (log N)3. ��
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For distinct points P, Q ∈ [0, 1]2, it is Prob (dist (P, Q) ≤ D0) ≤ π · D2
0 . With

D0 = N−γ we infer E[|E2|] ≤
(
N
2

)
·π·D2

0 ≤ c2·N2−2γ for some constant c2 > 0. By
Markov’s inequality, using this and the estimates (5) and (6) there exist N points
P1, . . . , PN ∈ [0, 1]2 such that the resulting hypergraph G = (V, E2 ∪ · · · ∪ Ek)
with |V | = N satisfies for 2 ≤ g ≤ i ≤ j ≤ k but g < j:

|E2| ≤ k3 · c2 · N2−2γ and |Ej | ≤ k3 · cj · Aj−2
j · N j (12)

s2;(g,i,j)(G) ≤ k3 · c2;(g,i,j) · Ai−2
i · Aj−g

j · N i+j−g · (log N)3. (13)

For suitable constants c′j > 0, j = 3, . . . , k, which will be fixed later, we set

Aj := (c′j · (log n)1/(j−2))/n(j−1)/(j−2). (14)

Lemma 6. For fixed γ > 1/2 it is |E2| = o(|V |).

Proof. Using (12) and |V | = N , we have |E2| = o(|V |) provided that N2−2γ =
o(N) ⇐⇒ N1−2γ = o(1), which holds for γ > 1/2. ��

Lemma 7. For fixed 2 ≤ g ≤ i ≤ j ≤ k but g < j and for fixed constant β with
0 < β < (j − g)/((j − 2) · (i + j − g − 1)) it is s2;(g,i,j)(G) = o(|V |).

Proof. By using (13) and (14) and |V | = N = n1+β with fixed β > 0 we have
s2;(g,i,j)(G) = o(|V |) for j = 2, . . . , k − 1, provided that

Ai−2
i · Aj−g

j · N i+j−g · (log N)3 = o(N)

⇐⇒ (log n)4+
j−g
j−2 · n(1+β)(i+j−g−1)−(i−1)− (j−g)(j−1)

j−2 = o(1)
⇐⇒ (1 + β) · (i + j − g − 1) < i − 1 + ((j − g) · (j − 1))/(j − 2) ,

which holds for β < (j − g)/((j − 2) · (i + j − g − 1)). ��

Fix β := 1/(2 · k2) and γ := k/(2 · (k − 1)). Then, with (14) and D0 = N−γ and
N = n1+β all assumptions in Lemmas 5–7 are fulfilled. We delete one vertex
from each 2-element edge E ∈ E2 and each (2; (g, i, j))-cycle, 2 ≤ g ≤ i ≤ j ≤ k
but g < j, in G. Let V ∗ ⊆ V be the set of remaining vertices. The induced
subhypergraph G∗ = (V ∗, E∗

3 ∪ · · · ∪ E∗
k ) of G with E∗

j := Ej ∩ [V ∗]j , j = 3, . . . , k,
is linear, and by (12), and Lemmas 6 and 7 fulfills |V ∗| ≥ N/2 and |E∗

j | ≤
k3 · cj · Aj−2

j · N j . By (14), the hypergraph G∗ has average degree

tj−1
j = j · |E∗

j |/|V ∗| ≤ 2 · k3 · j · cj · (c′j)
j−2 · N j−1 · log n/nj−1 =: (tj(1))j−1

for the j-element edges. Fix a constant c′ > 0 such that Ck/(2 · c′) · β1/(k−1) > 1
and set T := c′ · (N/n) · (log n)1/(k−1). Then fix constants c′j > 0, j = 3, . . . , k,
in (14) such that

(tj(1))j−1 = (2 · k3 · j · cj · (c′j)j−2 · N j−1 · log n)/nj−1 ≤

≤ 1/32 ·
(

k − 1
j − 1

)

/(10(3(k−j))/(k−1) · k6) · T j−1 · (log T )(k−j)/(k−1).
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Then, the assumptions in Theorem 4 are satisfied for G∗, and its independence
number α(G∗) satisfies for some constant Ck > 0:

α(G) ≥ α(G∗) ≥ Ck · (|V ∗∗|/T ) · (log T )
1

k−1 ≥ Ck · (N/(2 · T )) · (log T )
1

k−1 ≥

≥ Ck · n

2 · c′ · (log n)
1

k−1
·
(
log(nβ)

) 1
k−1 ≥ n.

The vertices of an independent set I with |I| = n yield n points among the N
points P1, . . . , PN ∈ [0, 1]2, such that for j = 3, . . . , k the area of the convex
hull of any j distinct points of these n points is Ω((log n)1/(j−2)/n(j−1)/(j−2)) as
desired. ��
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9. R. A. Duke, H. Lefmann and V. Rödl, On Uncrowded Hypergraphs, Random
Structures & Algorithms 6, 1995, 209–212.

10. A. Fundia, Derandomizing Chebychev’s Inequality to find Independent Sets in
Uncrowded Hypergraphs, Random Structures & Algorithms, 8, 1996, 131–147.
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Abstract. For a plane triangulation G with n vertices, it has been
proved that there exists a plane triangulation G with n vertices such
that for any st-orientation of G, the length of the longest directed paths
of G from s to t is ≥ � 2n

3 � [18]. In this paper, we prove the bound 2n
3

is optimal by showing that every plane triangulation G with n-vertices
admits an st-orientation with the length of its longest directed paths
bounded by 2n

3 +O(1). In addition, this st-orientation is constructible in
linear time. A by-product of this result is that every plane graph G with
n vertices admits a visibility representation with height ≤ 2n

3 + O(1),
constructible in linear time, which is also optimal.

1 Introduction

st-orientations (also known as st-numberings or bipolar orientations) of undi-
rected graphs satisfy certain criteria. They define no cycles and have exactly
one source s and one sink t. From which, st-orientations for planar graphs play
key roles in many graphs algorithms. For example, starting with an undirected
biconnected graph G = (V, E), many graph drawing algorithms, such as hier-
archical drawings [1], visibility representations [16,14,5,6,9,18,19] and orthogonal
drawings [13], use an st-orientation of G in order to compute a drawing of G.
Therefore, the importance of st-orientations in Graph Drawing is evident.

Given a biconnected undirected graph G = (V, E), with n vertices and m
edges, and two nodes s, t, an st-orientation of G is defined as an orientation of
its edges such that a directed acyclic graph with exactly one source s and exactly
one sink t is produced. An st-orientation of an undirected graph can be easily
computed using an st-numbering [8] of the respective graph G and orienting
the edges of G from low to high. An st-numbering of G is a numbering of its
vertices such that s receives number 1, t receives number n and every other node
except s, t is adjacent to at least one lower-numbered vertex and at least one
higher-numbered vertex.
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st-numberings were first introduced in 1967 in [7], where it was proved (to-
gether with an O(nm) time algorithm) that given any edge (s, t) of a bicon-
nected undirected graph G, we can construct an st-numbering. Later in the year
1976, Even and Tarjan proposed an algorithm that computes an st-numbering
of an undirected biconnected graph in O(n + m) time [8]. Ebert [3] proposed a
slightly simpler algorithm for the computation of such a numbering, which was
further simplified by Tarjan [17]. The planar case has been extensively investi-
gated in [14], where a linear time algorithm was presented which may reach any
st-orientation of a planar graph. However, no information regarding the bound
of the length of the longest directed paths resulted from the st-orientation was
given, except the trivial bound (n−1). In [10], a parallel algorithm was described.
An overview of the work concerning bipolar orientations was presented in [4,11].

However, all algorithms mentioned above compute an st-numbering without
expecting any specific properties of the oriented graph. Recently, by using canon-
ical ordering trees and Schnyder’s realizers for plane triangulations, Zhang and
He [19] proved that for any plane triangulation G with n vertices, there is an st-
orientation of G, constructible in linear time such that the length of the longest
directed paths is at most 2n

3 + 2�
√

n�, which is nearly optimal because there
is a plane triangulation G with n vertices such that the length of the longest
directed paths for any st-orientations of G is ≥ � 2n

3 � [18]. There is still a O(
√

n)
gap between the lower bound and the current nearly optimal algorithm. In this
paper, we close this gap by using three trees of a Schnyder’s realizer of a plane
triangulation and by utilizing each such tree in a somewhat thorough way. As a
direct by-product of this result, we prove that any plane graph G with n vertices
admits a visibility representation, constructible in linear time, with height at
most 2n

3 + O(1), which is also optimal. For empirical algorithms on shortening
the length of the longest directed paths, we refer readers to [12]. It introduced
parameterized st-orientations, trying to control the length of the longest path of
the resulting directed acyclic graph.

The present paper is organized as follows. Section 2 introduces preliminaries.
Section 3 presents the construction of an st-orientation for a plane triangulation
G with the length of its longest directed paths ≤ 2n

3 + O(1) . The result on
visibility representation with optimal height for a plane graph G is also presented
in this section.

2 Preliminaries

We begin this section by mentioning some motivations of investigating st-
orientations. Many algorithms in Graph Drawing use st-orientations as a first
step. More importantly, the length of the longest paths from s to t of the specific
st-orientation determines certain aesthetics of the drawing. For example:

Hierarchical Drawings: One of the most common algorithms in hierarchical
drawing is the longest path laying [1]. This algorithm applies to directed acyclic
graphs (which are necessarily planar). The height of such a drawing is always
equal to the length of the longest paths of the directed acyclic graph, l. If we
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want to visualize an undirected graph G using this algorithm, we must first st-
orient G. The height of the produced drawing will be equal to the length of the
longest path l of the produced st-orientation.

Visibility Representations: In order to compute visibility representations of
planar graphs, we first assign unit-weights to the edges of the graph and compute
the longest path to each one of its vertices from source s. The y-coordinate of
each vertex u in the visibility representation is equal to the length of the longest
path from s to u [16]. Therefore, we have the following Lemma [14,16]:

Lemma 1. Let G be a 2-connected plane graph with an st-orientation. A visibil-
ity representation of G can be obtained from an st-orientation O of G in linear
time. Furthermore, the height of the visibility representation equals the length of
the longest directed path in O.

Therefore, for the above graph drawing problems, it is crucial to find better
st-orientations such that the length of the longest directed paths is as small
as possible. Many researches have been done on shortening the length of the
longest directed paths. From the empirical algorithms’ side, [12] introduced pa-
rameterized st-orientations, trying to control the length of the longest paths of
the resulting directed acyclic graph. From the theoretical algorithms’ side, using
canonical ordering trees and Schnyder’s realizer for plane triangulations, Zhang
and He [19] proved that for any plane triangulation G with n vertices, there is
an st-orientation of G, constructible in linear time such that the length of the
longest directed paths is at most 2n

3 + 2�
√

n�, which is nearly optimal because
there is a plane triangulation G with n vertices such that the length of the
longest directed paths for any st-orientations of G is at least � 2n

3 � [18]. There
is still a O(

√
n) gap between the lower bound and the current nearly optimal

algorithm. We are going to close this gap in this paper.
Next, we are going to give definitions and preliminary results. Definitions not

mentioned here are standard.
A planar graph is a graph G = (V, E) such that the vertices of G can be

drawn in the plane and the edges of G can be drawn as non-intersecting curves.
Such a drawing is called an embedding. The embedding divides the plane into a
number of connected regions. Each region is called a face. The unbounded face is
called external face. The other faces are internal faces. A plane graph is a planar
graph with a fixed embedding. A plane triangulation is a plane graph where
every face is a triangle (including the external face). A subgraph G′ = (V ′, E′)
of G = (V, E) is called a spanning subgraph of G if V ′ = V .

Let O be an orientation (or a numbering) of a graph G. We will use length(O)
to denote the length of the longest directed paths of G. (Note that, we do not
require that O is necessarily an st-orientation.)

An ordered list O consisting of elements a1, a2, . . . , ak is written as O =<
a1, a2, . . . , ak >. For two elements ai and aj , if ai appears before aj in O, we write
ai ≺O aj. The reverse of an ordered list O =< a1, a2, . . . , ak > is the ordered
list < ak, . . . , a2, a1 >, which is going to be denoted by Or. The concatenation
of two ordered lists O1 and O2 is written as O1O2.
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Fig. 1. Edge directions around an internal vertex v

Definition 1. Let G be a plane triangulation of n vertices with three external
vertices v1, v2, vn in counterclockwise order. A realizer (also called a Schnyder’s
realizer) R = {T1, T2, Tn} of G is a partition of its internal edges into three sets
T1, T2, Tn of directed edges such that the following hold:

– For each i ∈ {1, 2, n}, the internal edges incident to vi are in Ti and directed
toward vi.

– For each internal vertex of G, v has exactly one edge leaving v in each of
T1, T2, Tn. The counterclockwise order of the edges incident to v is: leaving in
T1, entering in Tn, leaving in T2, entering in T1, leaving in Tn, and entering
in T2 (See Fig. 1). Each entering block could be empty.

Figure 2 show a realizer of a plane triangulation G. The dashed lines (dotted
lines and solid lines, respectively) are the edges in T1 (T2 and Tn, respectively).

Schnyder showed in [15] that every plane triangulation G has a realizer which
can be constructed in linear time. It is also shown that each set Ti of a realizer
is a tree rooted at the vertex vi. For each Ti of a realizer, we denote by T i the
tree composed of Ti augmented with the two edges of the external face incident
to the root vi of Ti. Obviously T i is a spanning tree of G.

Let i = 1, j = 2 and k = n. (Or i = 2, j = n and k = 1, or i = n, j = 1
and k = 2, respectively.) Let u be an internal vertex of G. Consider the tree Ti.
Let wj and wk be the parent of u in Tj and Tk respectively. Then we have the
following simple observation [2]:

Observation 1: wj precedes u in the counterclockwise postordering of Ti. wk

precedes u in the clockwise postordering of Ti. wj succeeds u in the clockwise
postordering of Ti. wk succeeds u in the counterclockwise postordering of Ti.

For example, in Figure 2, Tn is Tn (the tree in thick solid lines) augmented
with edges (v1, vn) and (v2, vn), which is a spanning tree of G. Consider the case
for i = n, j = 1 and k = 2. Consider the tree Tn, for the vertex u = 7, its parent
in T1 is wj = 6, its parent in T2 is wk = 9. They certainly hold the properties
stated in Observation 1.

Let T = (V, E) be a tree drawn in the plane, a balanced partition [19] of
T is the partition of V into three ordered subsets A, B, C such that: Let ai
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Fig. 2. A plane triangulation G and a realizer R of G

be the ith vertex of T in counterclockwise postordering, and bi be the ith
vertex of T in clockwise postordering. Marking the vertices of T in the or-
der a1, b1, a2, b2, . . . , ai, bi, . . ., continue this process as long as the next pair of
the vertices ai+1, bi+1 have not been marked. This process stops when either
ak+1 = bk+1 or bk+1 is already marked. This vertex is called the merge vertex
of T . When the marking process stops, the un-marked vertices of T form a sin-
gle path from the merge vertex ak+1 to the root of T . This path is called the
leftover path of T . Then A =< a1, a2, . . . , ak >, B =< b1, b2, . . . , bk >, and C is
the leftover path ordered from the merge vertex to the root of T .

In the above balanced partition, the subgraph induced by vertices in A ∪ B
defines a subgraph of a ladder graph of order k. Ladder graph is defined as follows
[19]:

Definition 2. Let L = (VL, EL) be a plane graph. If the vertex set VL is parti-
tioned into two ordered lists A =< a1, a2, . . . , ak > and B =< b1, b2, . . . , bk >.
For edges, if EL = EA ∪ EB ∪ Ecross, where: EA = {(ai, ai+1)|1 ≤ i < k};
EB = {(bi, bi+1)|1 ≤ i < k}; and Ecross consists of edges between a vertex
ai ∈ A and a vertex bj ∈ B. Then any spanning subgraph of L is called a ladder
graph of order k. The edges in Ecross are called cross edges.

A numbering O of the vertices of a ladder graph L = (A ∪ B, EL) is consistent
with respect to L if for any i < j, ai ≺O aj and bi ≺O bj.

The following lemma was proved in [19]:

Lemma 2. Let L = (A ∪ B, EL) be a ladder graph of order k. Then L has
a consistent numbering O such that length(O) ≤ k + 2�

√
k� − 1. O can be

constructed in linear time.
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3 Optimal st-Orientations for Plane Triangulations

Let G be a plane triangulation with n vertices, v1, v2, vn be its three external ver-
tices in counterclockwise order, R = {T1, T2, Tn} be a realizer of G. For any inter-
nal vertex u of G, consider the three paths P1(u), P2(u), Pn(u) from u to the roots
of T1, T2, Tn respectively, they only intersect at the vertex u. In addition, they
separate the interior regions of G into three subregions R12(u), R2n(u), Rn1(u)
(Rij(u) is also denoted by Rji(u)), in which the subregion Rij(u) is enclosed
by the paths Pi(u), Pj(u), i, j ∈ {1, 2, n}, i �= j. (Note that the regions specified
here don’t include their boundaries.) We have the following technical lemma, its
proof is omitted due to space limitation:

Lemma 3. Let G be a plane triangulation with n vertices, v1, v2, vn be its three
external vertices in counterclockwise order, R = {T1, T2, Tn} be a realizer of G.
We have the following:

1. For any i, j ∈ {1, 2, n}, i �= j, the subgraph of Ti induced by the vertices in
Rij(u) ∪ Pi(u) − {u} is a subtree of Ti.

2. For any i ∈ {1, 2, n}, the subgraph of Ti induced by the vertices in Rij(u) ∪
Rik(u) ∪ Pi(u) − {u} is a subtree of Ti.

We are going to denote the subtree in Lemma 3 (1) by T j
i (u), the subtree

in Lemma 3 (2) by T jk
i (u) in the remaining of the paper. For example, in Fig.

2, consider the vertex u = 7. T n
1 (u) is the tree with vertices {2, 4, 5, 6} in T 1.

T 1n
2 (u) is the tree with vertices {8, 9, 10, 11, 12, 13, 14} in T 2.
Before we proceed to next lemma, we would like to point out another simple

observation:

Observation 2: Let T be a tree rooted at v. T ′ be a subtree of T , also with v as
its root. Let u, w be two vertices in T ′. Then omitting vertices which are not in T ′

from the counterclockwise (clockwise, respectively) postordering of T produces a
counterclockwise (clockwise, respectively) postordering of T ′. This ordering of T ′

will be called the induced counterclockwise (clockwise, respectively) postordering
from T to T ′.

Lemma 4. let G = (V, E) be a plane triangulation with n vertices, v1, v2, vn be
three external vertices in counterclockwise order, R = {T1, T2, Tn} be a realizer
of G. If there is a path in any of Ti, i = 1, 2, n with length ≥ n

3 , then G has an
st-orientation O, constructible in linear time with length(O) ≤ 2n

3 + O(1).

Proof. We will prove for the case i = n, the other cases are similar. Assume that
there is a path Pn(v) in Tn, starting from a vertex v to the root vn, whose length
is ≥ n

3 . (If the path does not end at vn, extend it to the root vn. Its length is
still ≥ n

3 ). The vertices of G can be decomposed into three sets: A={vertices
in T n

1 (v)}, B={vertices in path Pn(v)}, and C={vertices in T 1n
2 (v)}. Obviously

V = A∪B ∪C. We are going to order A, B, C into ordered lists as the following:
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1. For the vertices in A, let OA be the induced clockwise postordering from T1
to T n

1 (v).
2. For the vertices in B, they are all on the path Pn(v). When traversing the

path from v to v1, we insert the first vertex to the very end, the second
vertex to the very front, recursively insert the remaining vertices into the
next available end or next available front of the ordered list. So the third
vertex in the path actually sits on the second last position in the ordered
list, the fourth vertex actually sits on the second position in the ordered list,
and so on. Denote this order by OB.

3. For the vertices in C, let OC be the induced counterclockwise postordering
from T2 to T 1n

2 (v)

Claim: The concatenation of Or
AOBOC defines an st-orientation O for G.

Proof of Claim

1. v1 is the first in O, v2 is the last in O.
2. vn succeeds v1, but it proceeds v2 in O.
3. For any vertex u �= v1 in A, its parent in T n

1 (v) proceeds u in O. According
to Observation 1, the parent w of u in Tn proceeds u in the clockwise pos-
tordering in T1. So if w is also in T n

1 (v), then according to Observation 2,
w also proceeds u in the clockwise postordering OA, since it is the induced
clockwise postordering. Thus w succeeds u in Or

A, and hence in O. On the
other hand, if w is not in T n

1 (v), then w is either in B or in C. Either way,
w succeeds u in O.

4. For any vertex u ∈ B, its parent w1 in T1 is in A, so w1 proceeds u in O. Its
parent w2 in T 2 is in C, so w2 succeeds u in O.

5. For any vertex u �= v2 ∈ C, its parent in T 1n
2 (v) succeeds it in O. Again,

according to Observation 1, the parent w of u in Tn proceeds u in the coun-
terclockwise postordering in T2. So if w is also in T 1n

2 (v), then according to
Observation 2, w also proceeds u in the counterclockwise postordering OC ,
since it is the induced counterclockwise postordering. Therefore, w proceeds
u in OC , and hence in O. On the other hand, if w is not in T 1n

2 (v), then w
is either in A or in B. Either way, w proceeds u in O.

Therefore, O is an st-orientation for G, since every vertex other than the source
v1 or the sink v2 has one vertex proceeding it and one vertex succeeding it in
the ordering.

End of Proof of Claim
Obviously, O can be constructed in linear time.

Consider a longest directed path P of O. It can only passes through at most
2 vertices on path Pn(v). Therefore, the total number of vertices it can pass
through is at most 2n

3 + 2. Hence, length(O) ≤ 2n
3 + O(1).

Lemma 5. let G = (V, E) be a plane triangulation with n vertices, v1, v2, vn be
three external vertices in counterclockwise order, R = {T1, T2, Tn} be a realizer
of G. If every path in Ti, i = 1, 2, n has length < n

3 , then G has an st-orientation
O, constructible in linear time with length(O) ≤ 2n

3 + O(1).
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Proof. Let l be the length of the longest paths in all of Ti, i = 1, 2, n. Hence,
l < n

3 . Let l = n
3 − 2k. Therefore k > 0.

Consider the balanced partition A, B, C of Tn, in which C is the leftover path.
Therefore |C| = r ≤ l. Because it is a balanced partition, we have |A| = |B| =
n−r

2 ≥ n−l
2 = n

3 + k.

Claim: The subgraph of T1 induced by A is a subtree of T1, denote it by T A
1 .

The subgraph of T2 induced by B is a subtree of T2, denote it by T B
2 .

Proof of Claim: We will only show the case for A. The other case is similar.
When we do balanced partition of Tn, we use counterclockwise postordering to
accumulate the set A. For any vertex u in A, its parent w in T1 comes before
u in this counterclockwise postordering according to Observation 1. Therefore,
both u and its parent w are in A. Hence, A induces a subtree of T1.

End of Proof of Claim
For the tree T A

1 , we can further consider its balanced partition, denote it by
A′, B′, C′, in which C′ is the leftover path. Consider C′, its length is ≤ l. There-
fore, we have |A′| = |B′| = |A|−|C′|

2 ≥
n
3 +k−l

2 = 3k
2 . Since both |A′| and |B′|

are necessarily integers, therefore |A′| = |B′| ≥ � 3k
2 �. For the tree T B

2 , we can
further consider its balanced partition, denote it by A′′, B′′, C′′, in which C′′ is
the leftover path. Similarly, |A′′| = |B′′| ≥ � 3k

2 �.
We are going to order A, B, C into ordered lists as the following:

1. For the vertices in A = A′ ∪ B′ ∪ C′, they form the tree T A
1 . Apply Lemma

2 to the subgraph induced by A′ ∪B′ (which is a ladder graph) to obtain an
ordering OA′B′ , then to the leftover path C′ (towards to its end vertex v1,
i.e. v1 is the last vertex in this ordering.) to obtain an ordering OC′ . Let OA

be the concatenation of OA′B′OC′ .
2. For the vertices in C, they are all on one path. When traversing the path

from one end v to the other end vn, we insert the first vertex to the very
end, the second vertex to the very front, recursively insert the remaining
vertices into the next available end or next available front of the ordered
list. So the third vertex in the path actually sits on the second last position
in the ordered list, the fourth vertex actually sits on the second position in
the ordered list, and so on. Denote this order by OC .

3. For the vertices in B = A′′ ∪B′′ ∪C′′, they form the tree T B
2 . Apply Lemma

2 to the subgraph induced by A′′ ∪ B′′ (which is a ladder graph) to obtain
an ordering OA′′B′′ , then to the leftover path C′′ (towards to its end vertex
v2, i.e. v2 is the last vertex in this ordering.) to obtain an ordering OC′′ . Let
OB be the concatenation of OA′′B′′OC′′ .

Claim: The concatenation of Or
AOCOB defines an st-orientation O for G.

Proof of Claim

1. v1 is the first in O, v2 is the last in O.
2. vn succeeds v1, but it proceeds v2 in O.



304 H. Zhang and X. He

3. For any vertex u �= v1 in A, its parent in T A
1 proceeds u in O. If u ∈ A′,

consider its parent w in T2, according to Observation 1, w proceeds u in the
counterclockwise postordering of T1. According to Observation 2, if w is also
in T A

1 , then w proceeds u in the counterclockwise postordering of T A
1 , since

it is the induced counterclockwise postordering. Because A′ is accumulated
counterclockwisely from the balanced partition of T A

1 , so w is also in A′ and
w proceeds u in OA′B′ , and hence in OA. Therefore, w succeeds u in Or

A, and
hence in O. On the other hand, if w is not in T A

1 , then w is either in B or in C.
Either way, w succeeds u in O. Similarly, if u ∈ B′, its parent in Tn succeeds
u in O. If u ∈ C′, then both its parents in T 2 and Tn succeed u in O.

4. The case for a vertex u �= v2 in B is similar to the above case for u �= v1 in
A.

5. For any vertex u ∈ C, its parent w1 in T1 is in A, so w1 proceeds u in O. Its
parent w2 in T2 is in B, so w2 succeeds u in O.

Therefore, O is an st-orientation for G, since every vertex other than the
source v1 or the sink v2 has one vertex proceeding it and one vertex succeeding
it in the ordering.

End of Proof of Claim
Obviously, O can be constructed in linear time.

Now we need to show that length(O) is ≤ 2n
3 + O(1).

Similar to Lemma 4, any longest directed path P of O can pick at most two
vertices from C. Applying Lemma 2, within Or

A, since the ladder graph A′ ∪ B′

is of order at least p = � 3k
2 �, therefore, Or

A can pick at most p+2�√p�− 1+1 =
p+2�√p� vertices from A′ ∪B′. (The plus 1 is because here we consider number
of vertices instead of number of edges.). Similarly, for the ladder graph A′′ ∪B′′,
it is of order at least p, therefore, OB can pick at most p + 2�√p� vertices from
A′′ ∪ B′′. So even if P picks all the vertices from C′ and C′′ (Both are ≤ l), the
total length of P is still at most l+l+2+2(p+2�√p�) = 2n

3 −4k+2(p+2�√p�)+2.
Because p = � 3k

2 �, it is easy to see that −4k+2(p+2�√p�)+2 ≤ O(1). Therefore,
the length(O) ≤ 2n

3 + O(1).

Now we can have our main theorem:

Theorem 1. 1. Let G be a plane triangulation with n vertices. Then G admits
an st-orientation O, constructible in linear time with length(O) ≤ 2n

3 +O(1).
2. Let G be a plane graph with n vertices. Then G admits a visibility represen-

tation, constructible in linear time with height ≤ 2n
3 + O(1).

Proof. 1. It comes directly from Lemma 4 and 5.
2. If G is not a plane triangulation, we add dummy edges to triangulate it into

a plane triangulation G′. Then according to (1) and Lemma 1, G′ admits
a visibility representation with height ≤ 2n

3 + O(1), which is obviously con-
structible in linear time. After deleting corresponding vertical line segments
for these added dummy edges, we have a visibility representation for G with
the same height, which is ≤ 2n

3 + O(1).

Note that, according to a result in [18], both above bounds are optimal.
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Abstract. We consider a natural generalization of the classical mini-
mum spanning tree problem called Minimum Spanning Tree with Neigh-
borhoods (MSTN) which seeks a tree of minimum length to span a set
of 2D regions called neighborhoods. Each neighborhood contributes ex-
act one node to the tree, and the MSTN has the minimum total length
among all possible trees spanning the set of nodes. We prove the NP-
hardness of this problem for the case in which the neighborhoods are a
set of disjoint discs and rectangles. When the regions considered are a set
of disjoint 2D unit discs, we present the following approximation results:
(1) A simple algorithm that achieves an approximation ratio of 7.4; (2)
Lower bounds and two 3-approximation algorithms; (3) A PTAS for this
problem. Our algorithms can be easily generalized to higher dimensions.

1 Introduction

Finding minimum spanning trees (MST) in graphical or geometric settings is one
of the most fundamental problems in computer science and has received a great
deal of attentions in the past [1]. In geometric settings, optimal solution has been
achieved in 2D using Delaunay triangulation. In higher dimensions, Agarwal et.
al. designed a method to compute MSTs in time O(n2−2/(�d/2�+1)+ε), where d is
the dimension. More efficient approximation algorithms were also investigated.
Har-Peled [2] showed that it is possible to construct an ε-approximation of the
Voronoi diagram in O( n

εd (log n) log n
ε ) time in d-dimensional space, and thus

can be used to construct an approximate MST. Later, Arya and Mount et. al.
[3] presented an improved algorithm for computing the ε-approximation of the
Voronoi diagram, which runs in O(nε

d−1
2 γ

3(d−1)
2 log γ) time, where 2 ≤ γ ≤ 1/ε.

In this paper, we consider a generalization of the geometric MST problem
called Minimum Spanning Tree with Neighborhoods (MSTN). In the MSTN prob-
lem, each point in the Euclidean MST problem becomes a region called neighbor-
hood. The objective is to identify a representative point from each neighborhood
so that the MST of the set of representative points has the minimum total length
among all possible spanning trees. The version of MSTN studied in this paper
(i.e., each neighborhood is a unit disc) is motivated by applications in biology.

� The research of this work was supported in part by an NSF CARRER Award CCF-
0546509.
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In cell biology, an important problem is to determine the DNA replication and
transcription networks using a set of replication and transcription sites (i.e.,
points) in some microscopic images [4]. Since the transcription sites are often
labeled RNA scattering along their corresponding transcribing DNA, they are
presumably close to the replication network for a possible switch of genomic
function between replication and transcription. Thus the replication network
needs not only to span the replication sites but also to pass the neighborhood of
each transcription site, and therefore can be computed by solving 3D MSTN.

The concept of neighborhoods has been investigated in other geometric op-
timization problems. The most notable one is the Traveling Salesman Problem
with Neighborhoods (TSPN), in which a minimum-length tour of the neighbor-
hoods is sought. As a generalization of the classical TSP problem, the TSPN
problem is clearly NP-hard. The problem was first studied by Arkin and Hassin
[5]. They gave an O(1)-approximation algorithm for some special cases such as
regions with parallel diameter segments and comparable diameters. Mata and
Mitchell [6] obtained an O(log n)-approximation algorithm for the general case
of connected polygonal regions, based on the Guillotine rectangular subdivisions,
and runs in O(m5) time, where m is the total complexity of the n regions. The
time bound was later improved by Gudmundsson and Levopoulos [7]. For any
fixed ε > 0, their algorithm either outputs an O(log n)-approximation tour in
time O(n log n+m), or a (1+ ε)-approximation tour in time O(m3). Dumitrescu
and Mitchell [8] also designed a constant approximation algorithm for the case of
arbitrary connected neighborhoods having comparable diameters, and a PTAS
for the case of unit disc neighborhoods. When the neighborhoods are a set of
disjoint convex fat objects, a polynomial-time constant-approximation algorithm
was given by M. de Berg et. al. [9]. Recently, Mitchell [10] showed the first PTAS
result of TSPN for fat regions (using a very weak notion of “fat”).

To our best knowledge, there is no previous hardness result on MSTN. In
Section 2, by reducing from the planar 3-satisfiability problem, we show that
it is NP-hard to solve MSTN when the neighborhoods are a set of 2D disjoint
unit discs and rectangles. As for the approximation results, it is likely that the
constant-approximation algorithm for TSPN given by M. de Berg in [9] can be
generalized here, but the algorithm is not so practical due to its large constant
factor (In the paper they showed a factor of 93 for the supposedly better case
when input is a set of disjoint axis-aligned squares). In Section 3.1, we present
a simple approximation algorithm with asymptotic approximation ratio of 7.4
for MSTN of disjoint unit discs. Later on, we improve the approximation factor
by establishing two lower bounds on the length of MST of a set of disjoint discs
in Section 3.2. Two near linear time 3-approximation algorithms are presented
in Section 3.3, both easy to implement. It seems also possible to generalize the
PTAS for TSPN given by Mitchell in [10], which is based on a novel extension
of the m–guillotine method, to the MSTN problem. In Section 3.4, we intro-
duce a polynomial time approximation scheme for MSTN of disjoint unit discs,
which is based on an interesting generalization of Arora’s framework for Euclid-
ean TSP and other related problems [11], and runs in O(n(log n)O(1/ε)) time.
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The m–guillotine based method [10] is quite involved and generally has higher
runnning time comparing to our PTAS. Moreover, it is not clear whether the
m–guillotine based method can be extended to higher dimension, whereas all
our approximation algorithms (including the PTAS) can be easily extended to
higher dimensions. Our algorithms can also be extended to the cases in which
the discs have comparable radii and/or slightly overlap. Due to the space limit,
we omit many details of our algorithms and some details of the hardness proof
from this version.

2 Hardness Result of the MSTN Problem

Problem 1. Minimum Spanning Tree of Discs and Rectangles
(MSTDR):
Given: A set D of disjoint discs, and a set R of disjoint rectangles in a plane.
Objective: A minimum spanning tree of D and R.

To show the NP-hardness of MSTDR, we reduce from the planar 3-satisfiability.

Problem 2. Planar 3-Satisfiability (P3SAT):
Given: A set L of literals, and a collection C of clauses over L with |c| = 3 for all
c ∈ C. Furthermore the bipartite graph G = (V, E) is planar, where V = L ∪ C
and E = {{x, c} : x or x̄ occurs in c}.
Problem: Is there a satisfying truth assignment for C?

The NP-completeness proof of P3SAT was given in [12]. We use the planarity of
the underlying graph of P3SAT to construct a planar instance in which we can
easily determine MSTDR. We start with a planar embedding of a given instance
(L, C) of P3SAT, and then extend the literal and clause vertices to form geometric
components consisting of discs and rectangles. The constructed instance contains
literal components and clause components that reflects the relation between the
satisfiability of clauses and the existence of a MST. Figure 1 illustrates three lit-
erals and one clause containing these three literals.

As shown in Figure 1, we use a shadowed rectangle with rounded corners to
represent a sequence of slightly disjoint unit discs. We call such rectangles as disc
sticks. By “slightly disjoint”, we mean that the distance between two consecutive
discs can be ignored compared to the total length of MST. The centers of all
discs in one disc stick are collinear and the supporting line of all centers is called
the center line of the disc stick. Let r be the radius of unit discs, and δ be any
number � r. We construct literal components and clause components as follows.

Literal components

1. For each literal x (including its negation) appearing in a total of mx clauses,
create mx vertical disc sticks (called positive disc sticks or x disc sticks) to
represent x and and mx vertical disc sticks (called negative disc sticks or x̄
disc sticks) to represent x̄. These x and x̄ disc sticks are arranged alternately
and spaced by a distance of 4δ − 2r. See Figure 1.
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Fig. 1. An illustration of the hardness proof

2. Put two longer vertical disc sticks (called forcing disc sticks) to start and
end the array of disc sticks of literal x. See Figure 1. The starting forcing
disc stick which is neighboring to an x disc stick is called a negative forcing
disc stick, and the ending disc stick which is neighboring to an x̄ disc stick
is called a positive forcing disc stick.

3. Create one horizontal disc stick (called an L disc stick) to “connect” all
literals together. See Figure 1.

4. Put a sequence of slightly disjoint rectangles, each of length 4δ and width
� δ, below the vertical disc sticks of each literal. All the rectangles are
aligned on the same horizontal slap, and the center lines of the vertical
sticks pass through the “gaps” between neighboring rectangles. Thus for a
literal x appearing in mx clauses, there are 2mx + 1 rectangles for x.

5. The distance from an x (or x̄) disc stick to the nearest rectangle is 2δ.
6. The distance from a forcing disc stick to the nearest rectangle is δ.

Clause components

1. For each clause c containing three literals, construct three vertical disc sticks
(each corresponding to a literal in c) and one horizontal disc stick, as shown
in Figure 1. The four disk sticks together are called a c disc stick.

2. Each vertical disc stick in a c disc stick is aligned with a vertical disc stick
of the corresponding literal. The three literal disc sticks aligned with the
vertical disc sticks of the c disc stick are called c’s selected literal disc sticks.

3. No two clauses share a selected literal disc stick.
4. The center lines of the vertical disc stick pass through the gap between

neighboring rectangles.
5. The distance from a vertical disc stick of c to the nearest rectangle in the

literal component is 3δ.
6. The disc sticks of the clauses are placed according to the embedding of the

underlying planar graph. No disc sticks from two clauses intersect each other.
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7. The two horizontal disc sticks of any two distinct clauses are vertically sep-
arated by a distance of 4δ.

In the above construction, the radius of the discs and the width of the rec-
tangles are � δ, therefore can be ignored when considering the length of MST.

Next we introduce edges to connect these constructed components, and show
that a MST of the instance can be computed from a subset of these edges.

Spanning edges

– Type 1: Edges between neighboring discs in a disc stick. Since r � δ, such
edges are part of MST, and their total length can be viewed as a constant.

– Type 2: Edges between a positive (negative) disc stick to its nearest rectan-
gles. Since the center line of such a disc stick passes through the gap between
two neighboring rectangles, we create a vertical edge from the last type 1
edge of the disc stick to simultaneously connect the two nearest neighbor-
ing rectangles. We call such an edge a positive edge (or negative edge). The
length of a positive (negative) edge is 2δ, according to the construction.

– Type 3: Edges between a vertical disc stick of a c disc stick to its nearest
rectangles. Similar to a type 2 edge, each such edge connect a type 1 edge to
two neighboring rectangles (or a type 2 edge). This type of edges are called
truth assignment edges for clause c, and the length of each such edge is 3δ.

Now we consider the MST. Given a literal x, let Px be the portion of x in the
literal component, and lx be the total length of type 1 edges in Px.

Lemma 1. Any MST of Px contains either all positive edges and the positive
forcing edge of x or all negative edges and the negative forcing edge of x.

Proof. Suppose this is not true. Let Tx be such a MST which fails the lemma.
First, notice that the set of positive (negative) edges and the positive (nega-

tive) forcing edge, together with the type 1 edges of Px, form a MST T ′
x. The

length of T ′
x is lx + (2mx + 1)δ, where mx is the occurrences of x in the clauses.

Since Tx fails the lemma, one of the following two cases must be true. (Assum-
ing that all type 2 edges in Px are sorted into a sequence based on x-coordinates.)

1. Tx contains three consecutive type 2 edges. This cannot be true, since one
can remove the edge in the middle to obtain a shorter spanning tree.

2. Tx misses at least two consecutive type 2 edges. Let x̄i and xi+1 be two
consecutive type 2 edges missing from Tx. Let xi and x̄i+1 be the two type 2
edges immediately before x̄i and immediately after xi+1. To span the three
rectangles, say rl, rm, rr, between edge xi and x̄i+1, there must be at least
three edges (i.e. xi, x̄i+1 and an edge traversing rl (or rr) ) of a total length
of 8δ to connect the three rectangles to the rest of the Tx. But the total
length of x̄i and xi+1 is at most 4δ. Thus by replacing the edges traversing
rl (or rr) with x̄i (or xi+1) result in a tree with shorter length.

Since both cases lead to contradictions, the lemma follows. ��
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Let mx be the number of occurrences of a literal x in the clauses and m be
the total number of clauses. We have the following lemma regarding the truth
assignment (type 3) edges and the total length of a MST of the instance.

Lemma 2. Any MST T of the constructed components contains at most one
truth assignment edge for each clause, and has a total length of at least l +∑

x∈L (2mx + 1)δ + 3mδ, with the minimum achieved when it contains exactly
one truth assignment edge for each clause connecting to a type 2 edge of T .

Proof. Suppose the lemma is not true. Assume that T contains two truth assign-
ment edges tx and ty for a clause c. Let θ(x) and θ(y) be the truth assignments
represented by tx and ty, there are two cases about the connectivity of T :

1. Either all θ(x) (type 2) edges or all θ(y) (type 2) edges are contained in T
(by Lemma 1). Suppose without loss of generality that all θ(x) edges are in
T . Since literals x and y are connected by horizontal type 1 edges, removing
ty from T results in a shorter spanning tree. A contradiction.

2. None of the θ(x) and θ(y) (type 2) edges are contained in T . Then T must
traverse one rectangle in the literal components of either x or y to connect
the clause component of c. Again, one of the two truth assignment edges tx
and ty can be removed to obtain a shorter spanning tree. A contradiction.

For the total length of T , note that the length of a truth assignment edge is 3δ,
the length of a rectangle is 4δ, and the minimum distance between two clause disc
sticks is 4δ. Hence, the way of connecting a clause c’s component to the literal
components with the least cost is to add one truth assignment edge for c that
can directly connect to a type 2 edge contained in T . Therefore for each clause
c, at least one truth assignment edge with length of 3δ is needed for T . Thus by
Lemma 1, the total length of the MST is at least l +

∑
x∈L (2mx + 1)δ + 3mδ.

The minimum is achieved when T contains exactly one truth assignment edge
for each clause connecting to a type 2 edge of T . ��

With Lemmas 1, 2 we are ready to show the equivalence of Problem 2 and 1.

Theorem 1. There exists a MST of D and R with length of l+
∑

x∈L (2mx + 1)δ
+ 3mδ, if and only if the set of clauses C of (L, C) is satisfiable.

Proof. Sufficiency: Suppose that C is satisfiable, and let θ be a satisfiable truth
assignment. We construct the spanning tree T as follows:

1. T contains all the type 1 edges.
2. T contains one and only one type 3 edge for each clause, which can be chosen

according to θ.
3. For each literal x ∈ L, T contains all positive and the positive forcing edges

of x if the assignment θ(x) is true, or all negative and the negative forcing
edges of x if otherwise.

By Lemma 1 and the properties of all types of edges, T is a spanning tree of D
and R with length of l +

∑
x∈L (2mx + 1)δ + 3mδ. By Lemma 2, T is minimum.
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Necessity: By Lemma 2, we know that the length of any MST is at least l +∑
x∈L (2mx + 1)δ +3mδ, and the minimum is achieved when it contains exactly

one truth assignment edge for each clause connecting to a type 2 edge of the MST.
Thus, if there exists a tree T with a total length of l +

∑
x∈L (2mx + 1)δ + 3mδ,

we can have a unique truth assignment θ by setting θ(x) to be true for each
x ∈ L if T contains all positive and positive forcing edges of x, and setting θ(x)
to be false for all other literals. Since T contains one truth assignment edge for
each clause, θ satisfies all clauses. ��

3 MST of Disjoint Unit Discs

3.1 A Simple Constant Algorithm

Property 1. In a MST of n disjoint discs, the number of internal nodes ≥ 
n−1
5 �.

We call a disc represented by an internal node in T as an internal disc.

Proposition 1. Let D be a set of n discs of radius r. Let T and L be a MST
of D and its length, respectively. Then, n ≤ 10

πrL + 1.

Our algorithm simply constructs a MST of the center points of the n discs 1.
We call this tree Tc as a minimum center tree.

Lemma 3. The length Lc of a minimum center tree Tc is at most (1+ 20
π )L+2r.

        Internal nodes

        Leaves

Fig. 2. The tree of the centers

(b)

(a)

Fig. 3. Put as many as discs along
a segment

3.2 Two Lower Bounds of the MST of Discs

We define distance dij between two discs di and dj to be the minimum Euclidean
distance between any two points pi ∈ di and pj ∈ dj . The segment sij between
the closest pair is called the distance segment of di and dj .

Let S be the set of n2 − n distance segments of D, called the distance set.
We say two discs di and dj is connected in a tree if their distance segment is
included. A minimum connecting tree Tn of D is defined as a subset of S which
connects all the discs and with the minimum total length

∑

sij∈Tn

dij . Below we

show that the length of a minimum connecting tree is a lower bound of a MST.
1 This algorithm follows the spirit of the constant approximation for TSP of discs [8].
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Lemma 4. Let D be the set of discs, and T and L be a MST of D and its length
respectively. Let Tn and Ln be a minimum connecting tree of D and its length
respectively. Ln ≤ L.

Next, we show another lower bound which investigates the relationship between
L, r, and n. To determine a good lower bound for L, we consider the “dual”
question of “What is the minimum length of a tree spanning a set of n discs?”,
that is, “How many disjoint discs can a tree of length L intersect?”. This can
be viewed as a disc “packing” problem along line segments, as the tree can be
decomposed into a set of line segments.

Lemma 5. Let s be a segment of length L, and n is the maximum number of
disjoint discs which intersect s. Then, L ≥ (n − 2)r when n ≥ 4 is an even
number, and n ≥ 3, L ≥ (n − 4 +

√
3)r when n ≥ 3 is an odd number .

Proof. Assume s is horizontal. If n is an even number, to have s intersect as
many disjoint discs as possible, the best way is to put n/2 discs on top of s (side
by side), and the other n/2 beneath s, as shown in Figure 3. If n is odd, we just
add the “extra” one to either end of s, as shown in Figure 3. ��

3.3 Two 3-Approximation Algorithms

Algorithm 1. A 3-approximation algorithm
Construct a minimum connecting tree Tn from the distance set. Let Ln be the length
of Tn.
for every internal disc di in Tn do

Among all the distance segments incident to di, arbitrarily pick one of the distance
segment’s endpoint pi1 on the boundary of di as the representative point of di.
Connect the endpoints of all other distance segments of di, pi2, . . . , pik, to pi1 by
adding intra-disc segments.

end for
Output the new T ′

n.

Theorem 2. Let T ′
n and L′

n be the spanning tree generated by Algorithm 1 and
its length, respectively. Let L be the length of a MST. Then,

L′
n ≤

{
3L, if n is even and n ≥ 4
3L + (4 − 2

√
3)r, if n is odd and n ≥ 3.

Consider the minimum center tree algorithm mentioned in Section 3.1. We could
improve its length bound by a more careful analysis.

Theorem 3. Let Tc be a minimum center tree. Cut off the intra-disc subseg-
ments of all leaves in Tc. Let L′

c be the length of the resulting tree. Then,

L′
c ≤

{
3L + 2r, if n is even and n ≥ 4
3L + (6 − 2

√
3)r, if n is odd and n ≥ 3.
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3.4 A Polynomial Time Approximation Scheme

Our PTAS follows the framework of Arora’s scheme for the Euclidean TSP
problem [13,11]. Below we first sketch the main steps of Arora’s technique.

1. Perturb the set of input points such that they are well separated and rounded
to integral points;

2. Recursively partition the set of rounded points and build a randomly shifted
quadtree such that each leaf contains at most one point;

3. In a bottom-up fashion, for each node of the quadtree decomposition, use
dynamic programming to compute the shortest (m, r)-light path, where r =
O(1/ε) and m = O(log n/ε).

When the geometric objects change from points to discs, a number of new
challenges occur. To overcome the additional difficulties, we adopt the following
modifications according to the special properties of our problem (See Figure 4):

1. Recursively partition the perturbed problem instance into a randomly shifted
quadtree structure, based on the positions of the disc centers, such that each
leaf contains at most one disc center;

2. The “boundary” of a subproblem is the “outer envelope” of the followings:
(a) The boundary of a square of the quadtree decomposition.
(b) The boundaries of a set of discs whose centers are inside this square;

3. A set of portals is evenly distributed on the boundary of each subproblem:
(a) Place portals on the straight line segment part (contributed by the square

edges) of a boundary segment;
(b) Place portals on the arc portion (contributed by the boundary of the

discs) of a boundary segment;
(c) The minimal distance between any two portals are bounded by ls/m,

where ls is the size of the square and m is a constant whose value will
be determined later on.

center points

portals

subproblem boundary

Fig. 4. A subproblem containing
four leaves

tree edges

portals

a ‘‘vertical’’ boundary edge

Fig. 5. An illustration of the patch-
ing lemma. The segments added
during the patching process are
shown as the “dash-dot-dot-dot”
line.

We define the size of a subproblem boundary as 1/4 of the total length of the
boundary associated with the subproblem. The next lemma upper-bounds the
boundary size of a subproblem.



Minimum Spanning Tree with Neighborhoods 315

Lemma 6. Let ls be the size of a square and l be the size of the subproblem
boundary. Then l ≤ (3π/8 + 1/2)ls.

A “bended tree” is a tree that visits all the input discs and some subset of portals.
A bended tree is (m, r)-light with respect to the shifted quadtree decomposition
if it crosses each side of the subproblem-boundary for at most r times and always
at portals. A bended tree could contain curve segments as its “bended” edges,
which can be straightened at the end of the algorithm to get a spanning tree
without increasing the cost.

We place a constant number (i.e., O(1/ε2)) of evenly distributed grid points
in each disc and make them the candidates for the representative point of each
disc. Thus, the subproblem of finding a (m, r)-light tree in each leaf square can
be solved in a constant time.

Lemma 7. (Patching Lemma) Let Π be any spanning tree of D and b be any
boundary edge of length l that Π crosses at least 3 times, there exists a set of
segments whose total length is at most 2l and whose addition to Π changes it
into another spanning tree crossing b only once.

The next lemma is useful in the analysis, and can be easily proved by using the
arguments given in [11].

Lemma 8. Let T be an optimal MST with length L, and t(T, b) be the number
of crossings by T on all the boundaries. Then t(T, b) is bounded by

√
2L.

Theorem 4. Let D be a set of n disjoint unit discs contained in a minimal
bounding box of size B = O(n/ε), and T be its MST of length L. For a random
(a, b)-shift, 0 ≤ a, b ≤ B, and 0 < ε < 1, there exists an algorithm computing a
(1 + ε)-approximation of T in O(n(log n)O(1/ε)) time with probability ≥ 1/2.
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Abstract. The disc covering problem asks to cover a set of points on
the plane with a minimum number of fix-sized discs. We develop an
O(n(log n)2(log log n)2) deterministic time 2.8334-approximation algo-
rithm for this problem. Previous approximation algorithms [7,3,6], when
used to achieve the same approximation ratio for the disc covering prob-
lem, will have much higher time complexity than our algorithms.

1 Introduction

The disc covering problem is to find a minimum number of discs of a prescribed
radius r to cover a given set of points on the plane. This problem has many ap-
plications in areas such as image processing, wireless communication and patten
recognition. It was proved to be NP-hard [4]. The first approximation algorithm
was derived by Hochbaum and Maass [7]. Their algorithm has computational

time n2�l
√

2�2

for approximation ratio (1 + 1
l )

2, where l > 0 is an integer accu-
racy control parameter. This approximation algorithm was further improved to
n6�l

√
2� in [3,6]. The high computational complexity of those polynomial time

approximation algorithms make them impractical for implementation in prac-
tice. Therefore, it is interesting, but challenging, to design faster polynomial time
approximation algorithms for the disc covering problem.

In this paper we try to find faster approximation algorithms for the disc cov-
ering problem with some reasonably small approximation ratios. We derive an
almost linear time approximation algorithm for the disc covering problem. This
algorithm runs in O(n(log n)2(log log n)2) time with a 2.8334-approximation ra-
tio. Previous approximation algorithms [7,3,6] will have much higher time com-
plexity than our algorithms, when they are used to achieve the same 2.8334-
approximation ratio for the disc covering problem. An O(n) time 3(1 + β)-
approximation algorithm for the two-dimensional disc covering problem was
shown in [5]. We generalize this linear time approximation algorithm to any
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fixed d-dimensional space by using the concept of Borsuk number, which is the
minimum number of d-dimensional balls of radius r to fill a d-dimensional ball
of a radius that is slightly larger than r.

We develop some novel method to cover the points in the local region, which
is roughly occupied by one disc. Instead of covering each local region by three
discs like [5], we let two local regions share one disc in some cases. Our method
involves the nontrivial algorithm by Chan [1] for covering points with two fixed
size discs, and another interesting algorithm by Meggido and Supowit [9] for
covering points with one fixed size disc.

2 Notations and Shifting Strategy

Given a set of input points P and a radius r, Let o(P ) denote the minimum
number of discs of radius r to cover all the points in P . For any given approxi-
mation algorithm A, which outputs A(P ) many discs of radius r to cover P , we
shall have A(P ) ≥ o(P ). The approximation ratio of the algorithm A is defined
as maxP

A(P )
o(P ) . Let Cr(p) be a disc with a radius r and centered at the point p.

For two points p1, p2 in the d-dimensional Euclidean space Rd, dist(p1, p2)
is the Euclidean distance between p1 and p2. For a set A ⊆ Rd, dist(p1, A) =
minq∈Adist(p1, q).

A point in Rd is a grid point if all of its coordinates are integers. For a
d-dimensional point p = (i1, i2, · · · , id) and a > 0, define grida(p) to be the
set {(x1, x2, · · · , xd)|ij − a

2 ≤ xj < ij + a
2 , j = 1, 2, · · · , d}, which is a half

open and half close ad-volume d-dimensional cubic region. For a1, · · · , ad > 0, a
(a1, · · · , ad)-grid point is a point (i1a1, · · · , idad) for some integers i1, · · · , id. For
a ball B in Rd, let r(B) denote the radius of B, center(B) denote the center
of B, and extendδ(B) be the ball with the same center as B but with a larger
radius (1 + δ)r(B) for δ > 0.

We will use the shifting method developed by Hochbaum and Maass [7] to
handle some subcases of our algorithms. For completeness, we give the descrip-
tion of the shifting method to deal with the disc covering problem. Let l > 0
be the integer parameter to control the accuracy of approximation. Assume
that all the points in the input set P are in a region B, and discs of radius r
are used to cover P . The region B is partitioned into vertical strips of width 2r,
B1, B2, · · · , Bk. Without loss of generality, we assume that the union of every two
consecutive strips intersects P (otherwise, the covering problem can be decom-
posed into two independent covering problems). This indicates that the num-
ber of strips is O(|P |). Group every l consecutive strips into a wider strip of
width 2rl. In other words, each wider strip is Li = Bi ∪ Bi+1 · · · ∪ Bi+l−1 for
i = 1, · · · , k − l + 1, and Li = Bi ∪ Bi+1 · · · ∪ Bk for i = k − l + 2, · · · , k. We
also define L0

i = B1 ∪ B2 · · ·Bi−1, which is the union of first i − 1 blocks. The
i-th shifted case has a set of wider strips Pi = {L0

i , Li, Li+l, Li+2l, · · · , Li+til},
forming a partition for B (B = L0

i ∪ Li ∪ Li+l ∪ · · · Li+tl).
Define optP (D) to be the set of the discs in an optimal solution for covering

the points of the set P in the region D. Let di =
∑

L∈Pi
|optP (L)|. The crucial
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property of the shifting method [7] is that
∑l

i=1 di ≤ (1 + l)|optP (B)|. This
implies that min1≤i≤l di ≤ (1 + 1

l )|optP (B)|. Assume we have a local algorithm
A for solving each local area Li with approximation ratio APA. The solution of
the algorithm A for the partition Pi is si =

∑
L∈Pi

A(L) ≤ APA ·di. The shifting
method SA applies the algorithm A for each partition Pi, 1 ≤ i ≤ l, and outputs
the result SA(B) = minl

i=1 si. Therefore, SA(B) ≤ (1 + 1
l ) · APA · optP (B).

Theorem 1 ([7]). Assume that a local algorithm A has an approximation ratio
APA for the disc covering problem. Then, the approximation ratio APSA of the
shifting method utilizing A satisfies APSA ≤ (1 + 1

l )APA.

For the d-dimensional ball covering problem, repeating the shifting method at
the directions of d-axis, we can get the following result:

Theorem 2 ([7]). Assume that a local algorithm A has an approximation ratio
APA for the disc covering problem in the region of volume ld. Then, the approx-
imation ratio APSA of the shifting method utilizing A satisfies APSA ≤ (1+ 1

l )
d.

Furthermore, its computational time is O(ndlTd(l)), where Td(l) is the compu-
tational time for the optimal solution in a local d-dimensional cubic region of
volume (2rl)d.

3 Borsuk Number and Disc Covering

For any given dimension d > 0 and any given radius r > 0, let the Borsuk
number B(d) be the minimum number of d-dimensional balls of radius r in Rd

that can fill a d-dimensional ball of radius r + δ in Rd for some δ > 0. It is
well-known that B(2) = 3 and B(3) = 4. Given a set P of points in Rd, the
d-dimensional disc (or ball) covering problem is to find a minimum number of
d-dimensional discs (or balls) of radius r to cover all the points in P .

Lemma 1. For any given dimension d > 0 and any fixed parameter δ > 0, there
is an O(n) time algorithm that, given a set of n points P in Rd, returns a set of
points Sketchδ(P ) ⊆ P such that for every (δ, · · · , δ)-grid point q, gridδ(q)∩P 	=
∅ iff |gridδ(q) ∩ Sketchδ(P )| = 1.

Proof. Set Sketchδ(P ) = ∅. Unmark all the (δ, δ, · · · , δ)-grid points. For each
point p in P , find the (δ, δ, · · · , δ)-grid point q such that p ∈ gridδ(q). If q is not
marked, add p to Sketchδ(P ) and mark q. This takes O(n) time.

Theorem 3. Given a fixed dimension d > 0, a constant β > 0 and a radius
r > 0, for any set P of n points in Rd, we have two algorithms for covering
Sketchδ(P ) for some constant δ > 0 and P , respectively:

1. There exists an O(n) time (1 + β)-approximation algorithm for covering all
the points in Sketchδ(P ) with discs of radius r.

2. There exists an O(n) time B(d)(1+β)-approximation algorithm for covering
all the points in P with discs of radius r.
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Proof. Select an integer l such that (1 + 1
l )

d ≤ 1 + β. Assume that δ1 > 0 is
the constant such that a d-dimensional ball of radius r(1 + δ1) can be filled
by B(d) many d-dimensional balls of radius r. Let δ = rδ1√

d
. Let Q be the set

Sketchδ(P ) derived from Lemma 1. Apply the shifting method to find the (1+β)-
approximation to the minimum number of balls to cover all the points in Q. By
Theorem 2, we can get the (1 + β)-approximation for covering the points of Q
in O(nlT (l)) steps, where T (l) is the time in the (2rl)d region that has at most
(2rl

δ + 1)d (δ, · · · , δ)-grid points. Therefore, it has at most (2rl
δ + 3)d points in

Q. We use d points to determine the position of a ball in d-dimensional space.
Finding the optimal covering for the points of Q in a (2rl

δ )d region can be done
in O((2rl

δ + 3)2d) = O((2
√

dl
δ1

+ 3)2d) steps for fixed d. This completes the proof
for first part of the theorem.

To prove the second the part of the theorem, we continue with the set of
balls, denoted by S, obtained by the algorithm for the first part for covering
Sketchδ(P ). By the construction of Sketchδ(P ), every point p in P is either
covered by a ball in S, or it is not covered but is within distance

√
dδ to some

ball S. We replace each ball D in S by a ball D′ of radius r +
√

dδ and centered
at center(D), i.e., D′ = extend√dδ(D). Let S′ denote the new set of those larger
balls. Obviously, balls in S′ covers P . By the choice of δ, r+

√
dδ = r(1+δ1). Thus,

every ball in S′ can be filled with B(d) balls of radius r. Therefore, replacing
each ball D′ in S′ with B(d) ball of radius r that fill D′ yields a set of balls of
radius r for covering all the points in P . This completes the proof for the second
part of the part of the theorem. �

4 A 2.8334-Approximation Algorithm for 2D Covering

We present our main result in this section. We derive a 2.8334 approximation al-
gorithmfor the 2D disc covering problem with almost linear computational time.
We will use the linear time algorithm for finding the minimum disc to cover a set
of points by Meggido and Supowit [9]. We also use the O(n(log n)2(log log n)2)-
time algorithm developed by Chan, who improved the previous O(n(log n)9)-
time deterministic algorithm by Sharir [10] to check if a set of points on the
plane can by covered by two discs. An O(n(log n)2)time randomized algorithm
to check if a set of points on the plane can by covered by two discs was developed
by Epstein [2].

Lemma 2. Let r > 0 be a real number. For any constant 1 ≥ α > 0, there
are three constants α ≥ α1, α2, α3 > 0 such that for every disc D1 of ra-
dius r′ = (1 + β)r with β ≤ α1 and every disc D2 of radius r, if 2r′ − r

2 ≤
dist(center(D1), center(D2)) ≤ 2r′ − α2r, then the line through their intersec-
tion points has distance at most r′ − α3r to center(D1).

Proof. We first compute the two intersection points of the two discs D1 and D2.
Without loss of generality, we assume that the center of D1 is at the origin (0, 0)
and the center of D2 is at x-axis (d, 0), where d = dist(center(D1), center(D2)) ≤
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p

D
Dp

2

1

2

1

Fig. 1. Two Discs with Intersection

2r′ −α2r. See Figure 1 for an illustration. The two intersection points are at p1 =
(x, y) and p2 = (x, −y). It is easy to see that r′2 − x2 = r2 − (d − x)2. Thus, we
have x = r′2−r2+d2

2d . It is easy to see that x is maximal when d = 2r′ − α2r. Thus,
x is at most

r′2 − r2

2d
+

d

2
=

(r′ − r)(r′ + r)
2d

+
d

2
(1)

=
βr(2 + β)r

2(2(1 + β)r − α2r)
+

2(1 + β)r − α2r

2
(2)

= (1 +
β(2 + β)

2(2(1 + β) − α2)
+ β − α2

2
)r (3)

≤ (1 +
3β

2
+ β − α2

2
)r. (4)

We use that fact 0 < β, α2 ≤ 1 in the transition from (3) to (4), which gives that
β(2+β)

2(2(1+β)−α2)
≤ β(2+1)

2(2(1+0)−1) = 3β
2 . Assign α1 = α

4 and α2 = α, and α3 = α
8 . Thus

we have x ≤ (1 + β + 3α1
2 − α2

2 )r ≤ (1 + β − α
8 )r = r′ − α3r. �

Lemma 3. Let r > 0 and β > 0. There exist constants ε and δ with β ≥ δ >
ε > 0 such that if D is a disc of radius r′ = (1 + ε)r and L is a line of the
distance d ≤ r′ − δr to the center of D, then the larger part of D on one of two
sides of L can be covered by two discs of radius r.

Proof. We select positive constants ε, δ and t that satisfy the conditions below:

t = 5 (5)

δ = 12t2ε
2
3 (6)

t

2
> t2ε + (12t2)2ε

1
3 (7)

min(β,
1
4
) > δ, ε (8)
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Fig. 2. A Disc with an Intersection Line

It is easy to see the existence of those three constants. Without loss of gen-
erality, assume that the center of D is at the origin (0, 0) and line L is parallel
to y-axis. Let p1 = (x, y) and p2 = (x, −y) be the intersection points of disc D
and line L (see Figure 2). Since the center of D has distance at most r′ − δr to
line L,

x ≤ r′ − δr. (9)

We put a disc D1 of radius r with center at point g1 = (−tεr, δr). We put the
second disc D2 of radius r with center at g2 = (−tεr, −δr).

We use L≤x to denote the half plane on left side of line L. We will prove that for
every point q in the area of D ∩ L≤x has either dist(q, g1) ≤ r or dist(q, g2) ≤ r.
Let q = (x1, y1) be a point on the boundary of D with −r′ ≤ x1 ≤ x and y1 ≥ 0.
Clearly, x2

1 + y2
1 = r′2.

dist(q, g1)2 = (x1 + tεr)2 + (y1 − δr)2 (10)
= x2

1 + 2tεrx1 + (tεr)2 + y2
1 − 2(δr)y1 + (δr)2 (11)

= r′2 + 2tεrx1 + (tεr)2 + (δr)2 − 2(δr)y1 (12)
= (r + εr)2 + 2tεrx1 + (tεr)2 + (δr)2 − 2δry1 (13)
= r2 + 2εr2 + ε2r2 + 2tεrx1 + (tεr)2 + (δr)2 − 2δry1 (14)

Case 1. − r
2 < x1 ≤ x ≤ r′ − δr. This condition implies that r′ + x1 > r

2 and
r′ − x1 ≥ r′ − x ≥ δr. Therefore,

y1 =
√

r′2 − x2
1 =

√
(r′ − x1)(r′ + x1) ≥

√
δ

2
r. (15)

Now we prove that the distance between q and g1 is bounded by r. By (14),

dist(q, g1)2 = r2 + 2εr2 + ε2r2 + 2tεrx1 + (tεr)2 + (δr)2 − 2δry1 (16)

≤ r2 + 2εr2 + ε2r2 + 2tεrx1 + (tεr)2 + (δr)2 − 2

√
1
2
δ

3
2 r2 (17)
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≤ r2 + 2εr2 + ε2r2 + 2tεr2 + (tεr)2 + (δr)2 −
√

2δ
3
2 r2 (18)

≤ r2 + (2ε + ε2 + 2tε + (tε)2 + δ2 −
√

2δ
3
2 )r2 (19)

≤ r2 + (6t2ε −
√

2δ
3
2

2
)r2 (20)

< r2 (21)

Transition from (16) to (17) is from (15). In transition (19) to (20), we use the

fact thats ε, ε2, tε, t2ε2 ≤ t2ε and δ2 ≤ δ
3
2

2 ≤
√

2δ
3
2

2 . Those are from conditions (6)
to (8). Transition (20) to (21) is from (6).

Case 2. −r′ ≤ x1 ≤ − r
2 . We have that 2tεrx1 ≤ −tεr2. By (14),

dist(q, g1)2 ≤ r2 + 2εr2 + ε2r2 + 2tεrx1 + (tεr)2 + (δr)2 − 2δry1 (22)
≤ r2 + 2εr2 + ε2r2 − tεr2 + (tεr)2 + (δr)2 (23)

≤ r2 + (t2ε2 + δ2 − tε

2
)r2 (24)

≤ r2 + (t2ε2 + (12t2)2ε
4
3 − tε

2
)r2 (25)

≤ r2 + ε(t2ε + (12t2)2ε
1
3 − t

2
)r2 (26)

< r2 (27)

In transition (23) to (24), we use that fact that 2 + ε ≤ t
2 , which is derived from

(8). Transition (24) to (25) follow from (6). (26) to (27) is from the condition (7).
Case 3. q1 = (x, 0). Notice that x satisfies (9). We have that

dist(q1, g1) = (x + tεr)2 + (δr)2 (28)
= x2 + 2tεrx + (tεr)2 + (δr)2 (29)
≤ (r′ − δr)2 + 2tεrx + (tεr)2 + (δr)2 (30)
≤ r′2 − 2δrr′ + δ2r2 + 2tεr2 + (tεr)2 + (δr)2 (31)
≤ (1 + ε)2r2 − 2δr2 + δ2r2 + 2tεr2 + (tεr)2 + (δr)2 (32)
≤ r2 + 2εr2 + (εr)2 − 2δr2 + 2tεr2 + (tεr)2 + 2(δr)2 (33)
≤ r2 + (6t2ε − δ)r2 (34)
< r2. (35)

For transition (33) to (34), we use the facts that ε, ε2, tε, t2ε2 ≤ t2ε and 2δ2 ≤ δ,
which are derived from conditions (6) to (8). Transition (34) to (35) is due to
condition (6).

Let B(D∩L≤x) be the set of all the points (x1, y1) on the boundary of the top
half of disc D with y1 ≥ 0 and −r′ ≤ x1 ≤ x. Notice q1 = (x, 0) as in Case 3. For
every point p = (u, v) in the top half of D∩L≤x, i.e., u2 +v2 ≤ r′2, −r′ ≤ u ≤ x,
and 0 ≤ v, we have

dist(p, g1) ≤ max( max
q∈B(D∩L≤x)

(dist(q, g1), dist(q1, g1)) ≤ r.
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Thus, we have proved that D1 covers the top half of D ∩ L≤x. Similarly, we can
also prove that D2 covers the bottom half of D ∩ L≤x. Therefore, D1 and D2
completely cover D ∩ L≤x. �

Lemma 4. Let r > 0 be any given real number. For every constant α ∈ (0, 1),
there exist constants ε and ρ in the interval [0, α] such that for every two discs
D1, D2 of radius (1 + ε)r, if dist(center(D1), center(D2)) ≤ 4(1+ ε)r − ρr, then
they can be covered by five discs of radius r.

Proof. We prove the lemma by Lemmas 2 and 3. By Lemma 2, we have three
constants α1, α2 and α3 such that for every 0 < ε1 < α1, for any disc A1 of radius
(1+ ε1)r and any disc A2 of radius r, if the distance of their centers is within the
range [2(1 + ε1)r − r

2 , 2(1 + ε1)r − α2r], the line through the intersection points
between A1 and A2 has distance at most (1 + ε1)r − α3r to the center of A1.
Let β = min{ 1

20 , α1, α3} and ρ = 2α2. By Lemma 3, there are constants ε and
δ such that β ≥ δ > ε > 0 satisfy the condition in Lemma 3.

Case 1: The distance of the two centers of D1 and D2 is at least 4(1+ ε)r − r.
Let p be the middle point on the line through the centers of D1 and D2. By the
condition of the lemma, dist(p, center(D1)) ≤ 2(1 + ε)r − ρ

2r ≤ 2(1 + ε)r − α2r.
So, dist(p, center(D1)) ∈ [2(1 + ε)r − r

2 , 2(1 + ε)r − α2r]. Let B be the disc of
radius r and of center at the middle point p. By Lemma 2, the line through the
intersection points between D1 and B has distance at most (1 + ε)r − α3r ≤
(1 + ε)r − δr to the center of D1. By Lemma 3, D1 − B can be covered by two
discs of radius r. Similarly D2 − B can also be covered by two discs of radius r.
Therefore, D1 ∪ D2 can be covered by at most five discs.

Case 2: The distance of the two centers of D1 and D2 is less than 4(1+ε)r−r.
We consider two subcases:

Subcase 1: Disc D1 and disc D2 have intersection points p1 and p2 and the
center of D1 has distance at most r′ − δr to the line L through p1 and p2. By
Lemma 3, the larger part of D1 at one side of L can be covered by two discs of
radius r. The part of D2 at other side of L can be also covered by two discs of
radius r. Therefore, D1 ∪ D2 can be covered by four discs.

Subcase 2: Disc D1 and disc D2 have no intersection or the center of D1 has
distance ≥ r′ − δr to the line L through the intersection points of D1 and D2.
We put disc D with its center at the median on the line segment connecting the
centers of D1 and D2. Disc D has enough intersection with both D1 and D2 (the
center of D to the line through the intersection points between D and D1 (D2)
will be small enough) so that by Lemma 3, both D1 − D can be covered by two
discs of radius r and D2 − D can be covered by two discs of radius r. Therefore,
D1 ∪ D2 can be covered by five discs. �

Theorem 4. There exists an O(n(log n)2(log log n)2)-time 2.8334-approximation
algorithm for the disc covering problem on the plane.

Proof. Let r be the radius of discs for the covering problem. Let γ be a positive
real constant such that every disc of radius ≤ (1 + γ)r can be covered by three
discs of radius r. Let α = γ. Select ε and ρ according to Lemma 4. We set a = 1

3
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and η = εr√
2
. Select the constant β > 0 small enough such that 6−a

2 (1 + β) ≤
2.8334 and 2+ 5a

2 (1+β) ≤ 2.8334. Such a β exists because 6−a
2 = 2+ 5a

2 < 2.8334.
Let r′ be equal to r(1 + ε).

Algorithm
Input: A set of n points P on the plane.
(1) With the parameter β, use the algorithm of the first part of Theorem 3

to find a set of discs S of radius r to cover Sketchη(P ) (see Lemma 1).
(2) Let T = ∅ and U = S.
(3) For each disc D ∈ U
(4) begin
(5) if (there is a disc D′ ∈ S with

dist(center(D), center(D′)) ≤ 4r′ − ρr) then
(6) begin
(7) let U = U − {D, D′}, and
(8) let T = T ∪ {(D, D′)}.
(9) end (if)
(10) end (for)
(11) Let V be the set of discs in the pairs of T .
(12) For each (D, D′) ∈ T , cover extendη(D) and extendη(D′) with at most

5 discs of radius r.
(13) For each disc in D ∈ U , cover all the points in extendη(D) ∩ P with a

minimal number of discs (at most 3 discs are needed).
End of Algorithm

Let m be the total number of discs in the set S obtained by the algorithm in
the first part of Theorem 3 for covering Sketchη(P ). Let S, T and U be the sets
after running the algorithm above. Recall in section 2 that we define o(A), for
any set A of points, as the minimal number of discs of radius r for covering all
the points in A. As Sketchη(P ) is a subset of P and m

o(Sketchη(P )) ≤ 1 + β, we
have o(Sketchη(P )) ≤ o(P ) and

o(P ) ≥ m

1 + β
. (36)

Let t be the number of pairs of discs of distance 4r′ − ρr that have been
identified by the algorithm. Those pairs are put into T .

Case 1. 2t ≥ am. In other words, |V | ≥ am. The algorithm outputs at most
5
2am+3(1− a)m = 6−a

2 m discs of radius r to cover P . The approximation ratio
is ≤ 6−a

2 m/ m
(1+β) = 6−a

2 (1 + β) ≤ 2.8334.
Case 2. 2t < am. In other words, |V | < am. So, |U | ≥ (1−a)m. Notice that any

two discs in U has distance > 4r′ −ρr. Let mi(i = 1, 2, 3) be the number of discs
D in U such that extendη(D)∩P requires i discs of radius r to cover. Over all, the
algorithm needs at least m1+2m2+3m3

2 discs of radius r to cover all extendη(D)∩P
for every D in U , since each disc can be shared by at most two adjacent regions
(extendη(D1) and extendη(D2) for discs D1 and D2 in U). On the other hand,
we can cover all points in P with (m1 +2m2 +3m3)+ 5

2am discs of radius r, and
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these many discs have been identified by the algorithm. Combining with (36), we
have o(P ) ≥ max( m

1+β , m1+2m2+3m3
2 ). The approximation ratio of the algorithm

is at most (m1+2m2+3m3)+ 5
2 am

o(P ) ≤ (m1+2m2+3m3)+ 5
2 am

max( m
1+β ,

m1+2m2+3m3
2 )

≤ (m1+2m2+3m3)
m1+2m2+3m3

2
+

5
2 am

m
1+β

≤

2 + 5a
2 (1 + β) ≤ 2.8334.

By Theorem 3, the shifting part at step (1) in the algorithm for covering
Sketchη(P ) takes O(n) time. We can find the smallest circle to cover a set of
points in linear time [9]. We need O(z(log z)2(log log z)2) time to check if a set of
z points on the plane can be covered by two discs of radius r [1]. It is easy to see
that each disc only intersects with O(1) other discs. This shows that steps (3) to
(10) in the algorithm takes O(|S|) = O(n) time. In summary, for each disc D in
U , it takes at most O(z(log z)2(log log z)2) time to find a minimal number of discs
of radius r to cover extendη(D)∩P , where z = |extendη(D)∩P |. Since each point
stays in O(1) discs in S, the total time of step (9) is O(n(log n)2(log log n)2). �
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Abstract. In this paper, we study an interesting geometric partition
problem, called optimal field splitting with feathering (OFSF), which
arises in Intensity-Modulated Radiation Therapy (IMRT). In current clin-
ical practice, a multi-leaf collimator (MLC) with a maximum field size is
used to deliver the prescribed intensity maps (IMs). However, the max-
imum field size of an MLC may require to split a large intensity map
into several overlapping sub-IMs each being delivered separately, which
may result in sacrificed treatment quality. Few IM splitting techniques
reported in the literature have addressed the issue of treatment deliv-
ery accuracy for large IMs. We develop a new algorithm for solving the
OFSF problem while minimizing the total delivery error. Our basic idea
is to formulate the OFSF problem as computing a d-link shortest path in
a directed acyclic graph, which expresses a special “layered” structure.
The edge weights of the graph satisfy the Monge property, which enables
us to solve this d-link shortest path problem by examining only a small
portion of the graph, yielding an optimal linear time algorithm for the
OFSF problem.

Keywords: Intensity map splitting, shortest paths, Monge property,
Algorithms, IMRT.

1 Introduction

In this paper, we study an interesting geometric partition problem, called opti-
mal field splitting with feathering (OFSF), which arises in Intensity-Modulated
Radiation Therapy (IMRT) [11]. IMRT, a state-of-the-art radiation therapy tech-
nique for cancer treatments, aims to deliver a highly conformal radiation dose
to a target tumor while sparing the surrounding normal tissues. The quality
of IMRT crucially depends on the ability to accurately and efficiently deliver
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the prescribed dose distributions of radiation, commonly called intensity maps
(IMs). An intensity map is specified by a set of nonnegative integers on a 2-D
grid. The number in a grid cell indicates the amount (in unit) of radiation to be
delivered to the body region corresponding to that cell. The delivery of an IM
is carried out by a set of cylindrical radiation beams orthogonal to the IM grid.

One of the most advanced tools today for delivering IMs is the multileaf col-
limator (MLC) [11]. An MLC has multiple pairs of tungsten leaves of the same
rectangular shape and size. The two opposite leaves of each pair are aligned to
each other. The leaves can move up and down to form (say) an x-monotone
rectilinear region (i.e., monotone to the x-axis), called an MLC-aperture. The
cross-section of a cylindrical radiation beam (generated by a radiotherapy ma-
chine) is shaped by this MLC-aperture to deliver certain units of radiation to (a
portion of) an IM. The mechanical design of the MLCs restricts what kinds of
beam-shaping regions are allowed [11]. A common constraint is called the max-
imum field size: Due to the limitation on the fixed number of MLC leaf pairs
and the over-travel distance of the leaves, an MLC cannot enclose an IM of a
too large size (called the field size). During the delivery of an IM, the isocenter
O of the MLC is always aligned with the center of the IM.

One popular IMRT approach for delivering IMs using an MLC is the “step-
and-shoot” technique [4,11,13]. Mathematically, the “step-and-shoot” delivery
planning can be viewed as the following segmentation problem: Given an in-
tensity map A defined on a 2-D m × n grid, decompose A into the form of
A =

∑κ
k=1 αkSk, where Sk is a special 0-1 matrix specifying an MLC-aperture,

αk is the amount of radiation delivered through Sk, and κ is the number of MLC-
apertures used to deliver A. The reader is referred to [13,11] for more details on
the step-and-shoot IMRT technique.

Two key criteria are used to measure the quality of an IMRT treatment.
(1) The delivery error (accuracy): Due to the special geometric shapes of
the MLC leaves [2,11,13] (i.e., the “tongue-and-groove” interlock feature), an
MLC-aperture cannot be delivered perfectly. Instead, there is a delivery er-
ror between the planned dose and actual delivered dose (called the “tongue-
and-groove” error in medical literature [11,13]). Chen et al. [2] showed that
for an IM B = (bi,j)m′×n′ of size m′ × n′ (no larger than the maximum al-
lowed field size), the minimum amount of error for delivering B is captured
by the following formula (note that B contains only nonnegative integers):
Err(B) =

∑n′

j=1

{
b1,j +

∑m′−1
i=1 |bi,j − bi+1,j | + bm′,j

}
. Minimizing the delivery

error is important because according to a recent study [5], the maximum delivery
error can be up to 10%, creating underdose/overdose spots in the target region.
(2) The treatment time (efficiency): Minimizing the treatment time is crucial
since it not only lowers the treatment cost for each patient but also increases the
patient throughput of the hospitals; in addition, it reduces the risk associated
with the uncertainties in the treatment.

In current clinical radiation therapy, large intensity maps frequently occur
[7,6,10]. Due to the maximum field size constraint of the MLC design, a large
IM needs to be split into several sub-IMs each being delivered separately using
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the step-and-shoot delivery technique. However, such splitting may result in
prolonged beam-on time and increased delivery error, and thus compromise the
treatment quality. The field splitting problem, roughly speaking, is to split an
IM of a large size into multiple sub-IMs whose sizes are all no larger than a
threshold size, such that the treatment quality is optimized.

One simple way to split a large IM is to use straight lines, yielding abutting
sub-IMs. One of the problems associated with this field splitting method is the
field mismatching problem that occurs in the field junction region due to the
uncertainties in setup and organ motion [9,10]. If the borders of two abutting
sub-IMs do not precisely align each other, it may result in hotspots or coldspots.
To alleviate the field mismatching problem, a commonly used medical practice
is to apply a so-called field feathering technique [9,6,10]. Using this technique, a
large IM A is split into a set of sub-IMs, A1, A2, . . . , Aκ, such that each sub-IM
Ak is subject to the maximum field size constraint, and any two adjacent sub-IMs
overlap over a central feathering region. Note that in the former splitting method,
each IM cell belongs to exactly one sub-IM; but in the latter method, each cell
of the feathering region can belong to two adjacent sub-IMs, with non-negative
intensity value in both sub-IMs.

A few field splitting algorithms have been recently reported in the literature
to address the issue of treatment delivery efficiency for large IMs. To our best
knowledge, Kamath et al. [8] first gave an O(mn2) time algorithm to split an
m × n IM using vertical lines into at most three sub-IMs (thus restricting the
maximum width of a large IM) while minimizing the total beam-on time. The
beam-on time of a treatment is the time while a patient is exposed to actual
irradiation [11], which is closely related to the total treatment time. Wu [12] for-
mulated the field splitting problem for an arbitrary field width using vertical lines
as a k-link shortest path problem and developed an O(mnw) time algorithm,
where w is the maximum allowed field width. Kamath et al. recently studied the
field splitting with feathering [9]. However, their algorithm is optimal only for
the case that the input IM has one row and the width of the IM is ≤ 3w. Chen
and Wang [3] further developed an O(mn+mξd−2) time algorithm for optimally
splitting an IM of size m×n, where d is the number of resulting sub-IMs and ξ is
the remainder of n divided by w. Although it is useful to consider field splitting
with feathering to minimize the delivery error, to our best knowledge, no field
splitting algorithms are known aiming to minimizing the total delivery error.

In this paper, we study the following optimal field splitting with feather-
ing (OFSF) problem: Given an IM A = (ai,j)m×n of size m × n, a maximum
allowable field size l × w with m ≤ l and n > w, and the width range [δ .. Δ] of
each feathering region (0 < δ < Δ < w), split A using vertical lines into a se-
quence of d = � n−δ

w−δ � (≥ 2) sub-IMs S = {S1, S2, . . . , Sd} (from left to right),
such that: (1) the width of each sub-IM Sk is w; (2) any two neighboring sub-IMs
in the sequence overlap each other and the width of the overlapping (feathering)
region ranges from δ to Δ; (3) no sub-IM overlaps completely with its neighbor-
ing sub-IM(s); and (4) the total delivery error of these d sub-IMs is minimized.
Note that d is the minimum number of sub-IMs needed for delivering A. We may
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use more sub-IMs. But, that could significantly increase the total treatment time,
which is undesirable. We thus assume that each sub-IM has a maximum width w
since we can introduce columns filled with 0’s to the sub-IM without increasing
its delivery error. It is also reasonable here to assume that m ≤ l (i.e., we do not
need to split the IM along the rows of A) since the splitting along the rows of A
does not affect the delivery error.

We present an optimal linear time algorithm for solving the above OFSF
problem. In our algorithm, we first model the OFSF problem as a d-link shortest
path problem in a directed acyclic graph (DAG) of O(n) vertices and O(n(Δ −
δ)) edges. The computation of each edge weight takes pseudo-polynomial time.
Interestingly, this DAG has a special “layered” structure, which consists of d
layers with any two adjacent ones inducing a bipartite graph. We are able to
calculate each edge weight in O(m) time after a certain preprocessing. Moreover,
the edge weights of the DAG satisfy the Monge property [1]. Thus, we can solve
this d-link shortest path problem by examining only a small portion of the graph,
and our algorithm runs in an optimal O(mn) time.

2 The d-Link Shortest Path Model

In this section, we present a d-link shortest path model for solving the OFSF
problem.

Denote by A[j] the j-th column of IM A, i.e., A[j] = {a1,j , a2,j, . . . , am,j}, and
A[j .. k] consists of all rows of A from column j to column k. Since the width of
each sub-IM is fixed as w, d vertical lines {j1, j2, . . . , jd} are needed to determine
the starting column of each sub-IM in the splitting (including the first vertical
line which is always corresponding to the first column of A, i.e., j1 = 1). The k-th
feathering region Fk consists of multiple columns of A starting from Column jk+1
to Column jk+w−1, denoted by A[jk+1 .. jk+w−1]. Fk is somehow decomposed
into F

(0)
k and F

(1)
k such that Fk = F

(0)
k + F

(1)
k (i.e., the value of every element

in Fk is partitioned into two non-negative integers, one in F
(0)
k and the other in

F
(1)
k ). Then, a feasible splitting S = {S1, S2, . . . , Sd} of A is defined, as follows.

For each k = 1, 2, . . . , d, Sk = F
(1)
k−1 || A[jk−1 + w .. jk+1 − 1] || F (0)

k , where || is a

concatenation operator, F
(1)
0 = F

(0)
d = ∅, j0 = −w + 1 and jd+1 = n + 1. The

decomposition of each feathering region Fk may increase the total delivery error.
Let Δerr(j) denote the minimum increase of the delivery error resulting from
the decomposition of Fk. Two issues need to be resolved in order to solve the
OFSF problem: (1) how to choose a set of d vertical splitting line {jk}d

k=1; and
(2) how to decompose each feathering region such that the increased delivery
error is minimized.

To address the first issue, we model the OFSF problem as a d-link shortest
path problem in a weighted directed acyclic graph G = (V, E), which is defined
as follows.

The vertices of G are defined as V = {t}∪{vj | 1 ≤ j ≤ n}. Each column A[j]
(j = 1, 2, . . . , n) of A corresponds to exact one vertex vj in G. Note that if jk = j



OFSF in Intensity-Modulated Radiation Therapy 331

(k < d), then j +w−Δ ≤ jk+1 ≤ j +w− δ. Thus, for every j ∈ {1, 2, . . . , n− δ},
vertex vj has a directed edge in E to each vertex in {vk | j + w − Δ ≤ k ≤ j +
w−δ and k ≤ n}. That is, every edge (vj , vj′) ∈ E (j < j′) specifies a feathering
region A[j′ .. j + w − 1]. The weight c(vj , vj′) equals to the minimum increase
Δerr of the delivery error resulting from the decomposition of this feathering
region. Meanwhile, the only possible starting column of the last sub-IM Sd of a
feasible splitting is in the range of [n − w + 1 .. n − δ + 1]. Hence, for each vertex
vj (j = n − w + 1, . . . , n − δ + 1), we put in E a directed edge from vj to t. The
cost of edge (vj , t) is set to be 0.

Our algorithm then computes in G a d-link shortest path p from v1 to t:
v1 → vj∗

2
→ vj∗

3
→ . . . → vj∗

d
→ t. Obviously, the sequence of vertical lines

defined by {1, j∗2 , . . . , j∗d} specifies a feasible splitting S∗ of A. The total increase
of the delivery error due to the splitting of S∗ equals the total weight c(p) of
the path p, which is minimized. Thus, S∗ is an optimal splitting of A. The
graph G has O(n) vertices and O(n(Δ − δ)) edges. It takes O(n(Δ − δ)d) time
to compute a d-link shortest path in G after the graph is constructed. Note
that there are O(n(Δ − δ)) possible feathering regions. Assume that it takes a
time T for computing the minimum increase Δerr of the delivery error induced
from the decomposition of each feathering region. The total running time is
O(n(Δ − δ)(d + T )).

Lemma 1. The OFSF problem can be solved in O(n(Δ − δ)(d + T )) time by
computing a d-link shortest path in a DAG G.

We next show how to efficiently compute Δerr for each possible feathering re-
gions, actually, in O(m) time after an O(mn) time preprocessing, and the decom-
position to achieve the optimal Δerr can be obtained in linear time. In Section
4, we exploit the Monge property of the graph G to speed up the d-link short-
est path computation, yielding an optimal linear O(mn) time algorithm for the
OFSF problem.

3 Linear Time Algorithm for Optimal Feathering Region
Decomposition

In this section, we characterize the increase of the delivery error due to the de-
composition of a feathering region. Then, a linear time algorithm for the optimal
feathering region decomposition is developed.

3.1 Characterizing the Increase of the Delivery Error

Consider a feathering region Fk = A[l .. r] with r = l + δ − 1 (1 < l < r <
n), which is the overlapping region of sub-IMs Sk−1 and Sk. Assume that the
decomposition of Fk is F

(0)
k = (yi,j)m×δ plus F

(1)
k = (xi,j)m×δ. Then, Sk−1 ends

with F
(0)
k and Sk starts with F

(1)
k . The contribution R(Fk) of the feathering

region Fk (A[l .. r]) to the delivery error of IM A is
∑m

i=1
∑r+1

j=l |ai,j − ai,j−1|.
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While the contribution R(F (0)
k ) to the delivery error of Sk−1 (i.e., toward the

total sum of the delivery errors of the sub-IMs in the splitting S of A) is

m∑

i=1

⎛

⎝|yi,l − ai,l−1| +
r∑

j=l+1

|yi,j − yi,j−1| + |0 − yi,r|

⎞

⎠ ,

and the contribution R(F (1)
k ) to the delivery error of Sk is

m∑

i=1

⎛

⎝|xi,l − 0| +
r∑

j=l+1

|xi,j − xi,j−1| + |ai,r+1 − xi,r|

⎞

⎠ .

Thus, the increase of the delivery error due to the decomposition (i.e., F
(0)
k and

F
(1)
k ) of the feathering region Fk is R(F (0)

k )+R(F (1)
k )−R(Fk). We next develop

a linear time algorithm for an optimal decomposition of an feathering region to
minimizing the increase of the delivery error.

Observing that the decomposition of Fk can be performed row by row, we
define the following optimal vector decomposition (OVD) problem. Define
the complexity C(z) of a vector z = (z1, z2, . . . , zN ) as

∑N
j=2 |zj − zj−1|. Given

a non-negative integer vector b = (b1, b2, . . . , bN), decompose b into two non-
negative vectors x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yN), such that (1)
x1 = 0 and xN = bN ; (2) for each j = 1, 2, . . . , N , bj = xj + yj, and (3) the total
complexity of x and y (i.e., C(x) + C(y)) is minimized.

Then, for a given feathering region Fk = A[l .. r], we may view each ex-
tended row (ai,l−1, ai,l, . . . , ai,r, ai,r+1) as a vector ai. Applying the OVD al-
gorithm, ai is decomposed into two vectors, xi = (0, xi,l, . . . , xi,r, ai,r+1) and
yi = (ai,l−1, yi,l, . . . , yi,r, 0), with C(xi)+C(yi) being minimized. Clearly, (xi)m

i=1

and (yi)
m
i=1 can used to specify a decomposition of Fk (i.e., F

(0)
k and F

(1)
k ). Note

that R(Fk) =
∑m

i=1 C(ai), R(F (0)
k ) =

∑m
i=1 C(xi), and R(F (1)

k ) =
∑m

i=1 C(yi).
Thus, F

(0)
k and F

(1)
k is an optimal decomposition of Fk and the minimum increase

Δerr(Fk) of the delivery error is
∑m

i=1[C(xi) + C(yi) − C(ai)].
We next presents our optimal O(N) time OVD algorithm for computing an

optimal decomposition of a given vector b = (b1, b2, . . . , bN ). The OVD problem
is first modeled as computing a shortest path in a directed acyclic graph of
pseudo-polynomial size. By exploiting the convexity of the edge weight functions
of the graph, we show that the OVD problem can optimally be solved in linear
time. Chen and Wang [3] also studied an optimal vector decomposition problem,
but optimized a different criterion.

3.2 The Graph Model of the OVD Problem

Given a non-negative integer vector b = (b1, b2, . . . , bN), we define an edge-
weighted DAG G′ = (V ′, E′) for the OVD problem, as follows.

The element b1 (resp., bN ) of b corresponds to exactly one vertex v1(0) (resp.,
vN (bN )) in V ′, briefly called the source (resp., sink) vertex s (resp., t) of G′. For
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every other element bj (j = 2, 3, . . . , N − 1), there is a set Col(j) of bj + 1
vertices in G′ corresponding to bj ; Col(j) = {vj(h) | h = 0, 1, . . . , bj}, namely
the bj-column of G′. Intuitively, the vertices in Col(j) give all possible distinct
ways to decompose bj into two non-negative integers (i.e., each vertex vj(h)
corresponds to decomposing bj into h and bj − h). We also say that column
Col(1) (resp., Col(N)) consists of only one vertex v1(0) (resp., vN (bN )). For any
two adjacent columns Col(j) and Col(j + 1) (j = 1, 2, . . . , N − 1), each vertex
vj(h) ∈ Col(j) has a directed edge e to every vertex vj+1(h′), with an edge
weight w(e) = |h′ − h| + |(bj+1 − h′) − (bj − h)|.

Consider any s-t path p in G′, with p = v1(h1) → v2(h2) → . . . → vN−1(hN−1)
→ vN (hN ), where h1 = 0 and hN = bN (i.e., v1(h1) is the source s and vN (hN )
is the sink t). Let x(p) = (x1, x2, . . . , xN ) and y(p) = (y1, y2, . . . , yN ) be two
non-negative integer vectors defined from the path p, in the following way: for
each j = 1, 2, . . . , N , xj = hj and yj = bj − hj . Note that each s-t path p in G′

actually define a feasible decomposition of b, i.e., b = x(p) + y(p). The total
complexity of x(p) and y(p), C(x(p)) + C(y(p)), equals to the total sum of the
weights of the edges on p, i.e., w(p) = C(x(p)) + C(y(p)). Hence, a shortest s-t
path in G′, which can be computed in O(|V | + |E|) time, specifies an optimal
decomposition of b.

This is a pseudo-polynomial time algorithm for the OVD problem, which may
not be efficient enough, especially when the elements of b are large. However,
this DAG model lays down a base for further exploiting the intrinsic structures
of the OVD problem.

3.3 Our Optimal OVD Algorithm

Our OVD algorithm hinges on the piecewise linearity and convexity of the edge
weight functions of G′. For each j = 1, 2, . . . , N − 1, based on bj and bj+1, we
define a function fj(Δh): Z → Z+, as follows.

(1) If bj ≤ bj+1,

fj(Δh) =

⎧
⎨

⎩

2Δh + (bj+1 − bj), if Δh > 0
bj+1 − bj, if bj − bj+1 ≤ Δh ≤ 0 (∗)
−2Δh + (bj − bj+1), if Δh < bj − bj+1

(2) If bj > bj+1,

fj(Δh) =

⎧
⎨

⎩

2Δh + (bj+1 − bj), if Δh > bj − bj+1
bj − bj+1, if 0 ≤ Δh ≤ bj − bj+1 (∗∗)
−2Δh + (bj − bj+1), if Δh < 0

Note that fj(Δh) is piecewise linear and convex with respect to Δh. For any
edge (vj(h), vj+1(h′)) between two adjacent columns Col(j) and Col(j + 1),
Lemma 2 reveals the relation between the edge weight w(vj(h), vj+1(h′)) and
the function fj(Δh).

Lemma 2. w(vj(h), vj+1(h′)) = fj(h − h′).
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We next consider a shortest path from s to a specific vertex vĵ(ĥ) ∈ Col(ĵ) in

G′, denoted by s � vĵ(ĥ). We first define the following series {h−
j }ĵ

j=1.

h−
j =

⎧
⎨

⎩

ĥ, j = ĵ

max
{
0, h−

j+1 − max{0, bj − bj+1}
}

, 1 < j < ĵ

0, j = 1

Intuitively, for any j < ĵ, vj(h−
j ) is the “bottom-most” vertex on Col(j) such

that the edge (vj(h−
j ), vj+1(h−

j+1)) has the minimum edge weight among all edges
connecting a vertex in Col(j) to vj+1(h−

j+1). Let swj(h) denote the shortest path
weight from s to vj(h).

Lemma 3. (1) The path s � vĵ(ĥ) defined by the series {h−
j }ĵ

j=1, with s � vĵ(ĥ)
= v1(h−

1 ) → v2(h−
2 ) → . . . → vĵ(h

−
ĵ

), is a shortest path from s to vĵ(ĥ).

(2) The weight w(s � vĵ(ĥ)) of the path s � vĵ(ĥ) is sw2(h−
2 )+

∑ĵ
j=3 |bj − bj−1|.

Furthermore, sw2(h−
2 ) = h−

2 + |b2 − h−
2 − b1| = 2 max{h−

2 , b2 − b1} − (b2 − b1),
and h−

2 = max{0, ĥ −
∑ĵ

j=3 max{0, bj − bj−1}} from the definition of the series

{h−
j }ĵ

j=1. For a given instance of the OVD problem, ĥ = bN and obviously, the
series {h−

j }N
j=1 can be computed in an optimal O(N) time.

Lemma 4. Given a non-negative integer vector b = (b1, b2, . . . , bN ), an optimal
decomposition (x,y) of b (b = x+y) minimizing the total complexity C(x)+C(y)
can be computed in O(N) time, and the total complexity of the optimal solution
is 2 max{h∗, b2 − b1} − (b2 − b1) +

∑N
j=3 |bj − bj−1|, where h∗ = max{0, bN −

∑N
j=3 max{0, bj − bj−1}}.

3.4 Computing the Optimal Decomposition of a Feathering Region

As analyzed in Section 3.1, for a given feathering region Fk = A[l .. r], we can
view each extended row (ai,l−1, ai,l, . . . , ai,r, ai,r+1) as a vector ai. Applying the
OVD algorithm to decompose each ai into two vectors, xi and yi, we have the
minimum increase Δerr(Fk) of the delivery error for Fk is

∑m
i=1[C(xi)+ C(yi)−

C(ai)]. Based on Lemma 4, Δerr(Fk) =
∑m

i=1[2 max{h∗
i , ai,l − ai,l−1} − (ai,l −

ai,l−1)−|ai,l−ai,l−1|], where h∗
i = max{0, ai,r+1−

∑r+1
j=l+1 max{0, ai,j −ai,j−1}}.

We thus can introduce an additional matrix B = (bi,j)m×n such that bi,j =
∑j+1

k=1 max{0, ai,k −ai,k−1}} (ai,0 = ai,n+1 = 0). The matrix B can be computed
in O(mn) time. Hence, we have the following lemma.

Lemma 5. After an O(mn) time preprocessing, the minimum increase Δerr(Fk)
of the delivery error for any feathering region Fk can be computed in O(m) time,
and the decomposition of Fk to achieve the optimal Δerr(Fk) can be obtained in
linear time.
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4 Speeding Up the d-Link Shortest Path Computation in
G

In this section, we exploit the special “layered” structure of the graph G defined
in Section 2, and further show that G has the Monge property [1], which enables
us to compute a d-link shortest path in G in O(mn) time.

First, let us exam the possible starting column jk of the k-th (assume that
k > 1 since j1 is always 1) sub-IM Sk in a feasible splitting of the IM A. Note
that there are k−1 sub-IMs to the left and d−k sub-IMs to the right of Sk. Each
sub-IM has a fixed width of w and the minimum width of a feathering region is
δ. We thus have n− [(d−k)(w−δ)+w]+1 ≤ jk ≤ (k−1)(w−δ)+1, denoted by
Ck. Interestingly, the possible starting columns of any two overlapping sub-IMs
are disjoint.

Lemma 6. For any k = 1, 2, . . . , d − 1, Ck ∩ Ck+1 = ∅ (C1 = {1}).

To reflect this disjointness property, we redefine the graph G = (V, E), as follows.
G consists of d layers of vertices, with each layer k corresponding to all possible
starting columns of the k-th sub-IM and each vertex corresponding to a column
of A. More precisely, the first layer L1 contains one vertex v1 and the k-th layer
Lk (1 < k ≤ d) contains vertices {vj | n − [(d − k)(w − δ) + w] + 1 ≤ j ≤
(k − 1)(w − δ) + 1} (i.e., j ∈ Ck). For any vertices vj ∈ Lk and vj′ ∈ Lk+1
(k = 1, 2, . . . , d − 1), if w − Δ ≤ j′ − j ≤ w − δ, we put a directed edge e(vj , vj′)
in E from vj to vj′ . The weight c(vj , vj′ ) is set to be the minimum increase
of the delivery error for the corresponding feathering region A[j′ .. j + w − 1].
We introduce a dummy vertex t. Each vertex in Layer Ld has a directed edge
to t with a weight of 0. Due to the layered structure of G, the computation of
a d-link shortest v1-to-t path becomes computing a shortest v1-to-t path. We
next show the weights of the edges between two adjacent layers, Lk and Lk+1
(k = 2, 3, . . . , d − 1), has the Monge property.

Lemma 7. Given four vertices vj′ , vj′+1 ∈ Lk and vj′′ , vj′′+1 ∈ Lk+1 in G with
2 ≤ k < d, c(vj′ , vj′′ ) + c(vj′+1, vj′′+1) ≤ c(vj′ , vj′′+1) + c(vj′+1, vj′′ ).

sThe Monge property as shown in Lemma 7 indicates that there always exists a
set of shortest paths from v1 to every vertex on Layer Lk, such that no two paths
in the set “cross” each other. This is due to the fact that we can always replace
two crossing edges, if any, on two such shortest paths with two non-crossing
edges, and obtain two new paths whose weight sum is no larger than that of the
two original shortest paths. It follows that the two new paths thus generated
must also be the shortest.

For every vertex vj in the k-th layer Lk, let swk(j) denote the shortest path
length from v1 to vj ∈ Lk in G. Clearly, swk(j) = min{swk−1(j′)+c(vj′ , vj) |vj′ ∈
Lk−1 and w − Δ ≤ j − j′ ≤ w − δ}. Recall that an edge (vj′ , vj) ∈ E if and
only if vj′ ∈ Lk−1, vj ∈ Lk, and w − Δ ≤ j − j′ ≤ w − δ. Hence, the set of all
outgoing edges of each vertex vj′ and the set of all incoming edges of each vj can
be represented implicitly (such that we can access any edge of G in O(1) time



336 X. Wu and X. Dou

and compute its weight in O(m) time as shown in Section 3.4). Note that the
Monge property is normally defined on a matrix [1]. Lemma 7 actually shows the
Monge property of the matrix containing the path weight swk−1(j′) + c(vj′ , vj)
for every edge (vj′ , vj) between the vertices on two consecutive layers Lk and
Lk+1 of G, with 1 < k < d. Thus, applying the matrix-searching technique in [1],
it takes O(m(w − δ)) time to compute all shortest paths from v1 to all vertices
on the k-th layer while knowing all swk−1(j′)’s of Layer Lk−1. Hence, a shortest
v1-to-t path in G can be obtained in O(dm(w − δ)) = O(mn) time.

Theorem 1. Given an IM A of size m×n, the OFSF problem on A is solvable
in O(mn) time.

References

1. A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric Applica-
tions of a Matrix-Searching Algorithm, Algorithmica, 2(1987), pp. 195-208.

2. D.Z. Chen, X.S. Hu, S. Luan, C. Wang, and X. Wu, Mountain Reduction, Block
Matching, and Medical Applications, Proc. of the 21st Annual ACM Symposium
on Computational Geometry (SoCG), Pisa, Italy, June 6–8, 2005, pp. 35–44.

3. D.Z. Chen and C. Wang, Field Splitting Problems in Intensity-Modulated Radia-
tion Therapy, Lecture Notes in Computer Science, Springer-Verlag, Proc. 17th Int.
Symp. on Algorithms and Computation (ISAAC), Vol. 4288, pp. 701-711, 2006.

4. J. Dai and Y. Zhu, Minimizing the Number of Segments in a Delivery Sequence
for Intensity-Modulated Radiation Therapy with Multileaf Collimator, Med. Phys.,
28(10)(2001), pp. 2113-2120.

5. J. Deng, T. Pawlicki, Y. Chen, J. Li, S.B. Jiang, and C.-M. Ma, The MLC Tongue-
and Groove Effect on IMRT Dose Distribution, Physics in Medicine and Biology,
46(2001), pp. 1039-1060.

6. N. Dogan, L.B. Leybovich, A. Sethi, and B. Emami, Automatic Feathering of Split
Fields for Step-and-Shoot Intensity Modulated Radiation Therapy, Phys. Med.
Biol., 48(2003), pp. 1133-1140.

7. L. Hong, A. Kaled, C. Chui, T. LoSasso, M. Hunt, S. Spirou, J. Yang, H. Amols, C.
Ling, Z. Fuks, and S. Leibel, IMRT of Large Fields: Whole-Abdomen Irradiation,
Int. J. Radiat. Oncol. Biol. Phys., 54(2002), pp. 278-289.

8. S. Kamath, S. Sahni, S. Ranka, J. Li, and J. Palta, Optimal Field Splitting for
Large Intensity-Modulated Fields, Medical Physics, 31(12)(2004), pp. 3314-3323.

9. S. Kamath, S. Sahni, J. Li, J. Palta, and S. Ranka, A Generalized Field Split-
ting Algorithm for Optimal IMRT Delivery Efficiency, The 47th Annual Meeting
and Technical Exhibition of the American Association of Physicists in Medicine
(AAPM), 2005. Also, Med. Phys., 32(6)(2005), pp. 1890.

10. Q. Wu, M. Arnfield, S. Tong, Y. Wu, and R. Mohan, Dynamic Splitting of Large
Intensity-Modulated Fields, Phys. Med. Biol., 45(2000), pp. 1731-1740.

11. S. Webb, Intensity-Modulated Radiation Therapy, Institute of Cancer Research and
Royal Marsden NHS Trust, Jan. 2001.

12. X. Wu, Efficient Algorithms for Intensity Map Splitting Problems in Radiation
Therapy, Lecture Notes in Computer Science, Springer-Verlag, Proc. 11th An-
nual International Computing and Combinatorics Conference (COCOON), volume
3595, pp. 504-513, 2005.

13. P. Xia and L.J. Verhey, MLC Leaf Sequencing Algorithm for Intensity Modulated
Beams with Multiple Static Segments, Med. Phys., 25(1998), pp. 1424-1449.



Approximating the Maximum Independent Set

and Minimum Vertex Coloring on Box Graphs

Xin Han1, Kazuo Iwama1, Rolf Klein2, and Andrzej Lingas3

1 School of Informatics, Kyoto University, Kyoto 606-8501, Japan
{hanxin,iwama}@kuis.kyoto-u.ac.jp

2 University of Bonn, Institute of Computer Science I, D-53117 Bonn, Germany
rolf.klein@informatik.uni-bonn.de

3 Department of Computer Science, Lund University, 221 00 Lund, Sweden
Andrzej.Lingas@cs.lth.se

Abstract. A box graph is the intersection graph of a finite set of orthog-
onal rectangles in the plane. The problem of whether or not the maximum
independent set problem (MIS for short) for box graphs can be approx-
imated within a substantially sub-logarithmic factor in polynomial time
has been open for several years. We show that for box graphs on n ver-
tices which have an independent set of size Ω(n/ logO(1) n) the maximum
independent set problem can be approximated within O(log n/ log log n)
in polynomial time. Furthermore, we show that the chromatic number
of a box graph on n vertices is within an O(log n) factor from the size
of its maximum clique and provide an O(log n) approximation algorithm
for minimum vertex coloring of such a box graph. More generally, we
can show that the chromatic number of the intersection graph of n d-
dimensional orthogonal rectangles is within an O(logd−1 n) factor from
the size of its maximum clique and obtain an O(logd−1 n) approximation
algorithm for minimum vertex coloring of such an intersection graph.

1 Introduction

A box graph is an intersection graph of a finite set of rectangles. Computing
maximum or large independent sets (MIS) in box graphs has application in
efficient automated map labeling in geographic information systems (GIS), data
mining, VLSI design, image processing and multi-dimensional point location
[1,4,10]. For example, in the map labeling application, each label may correspond
to an orthogonal rectangle of fixed size and position, and the task is to place
as many disjoint labels as possible. The problem of minimum number vertex
coloring of box graphs is also relevant for the aforementioned applications.

For a graph G, let α(G) and ω(G) denote the size of maximum independent set
and the maximum clique in G, respectively. Next, let χ(G) denote the chromatic
number of G, i.e., the minimum number of colors sufficient to color all vertices
of G in such a way that no two adjacent vertices share the same color.

The NP-completeness of MIS for box graphs follows from [8]. The problem of
whether or not MIS for box graphs can be approximated within a substantially
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sub-logarithmic factor in polynomial time has been open for several years. The
O(log n) approximation algorithm from [1] has been improved to O(logk+1 n),
for any positive fixed integer k, and generalized to include higher dimensions in
[4] (see also [5]) 1. In [14], an algorithm with optimum-sensitive approximation
factor 1 + log2(α(G)) has been given. On the other hand, polynomial-time ap-
proximation schemes are known for the special cases where the rectangles have
unit height [1], are squares or have constant aspect ratio [7]. Furthermore, a sub-
exponential time algorithm for MIS in general box graphs has been presented
in [12]. Recently, the APX-hardness, and hence the non existence of PTAS,
for the generalization of MIS for box graphs to include d-dimensional boxes,
d ≥ 3, has been established in [6]. As for minimum vertex coloring, already in
the 60s Asplund and Grünbaum proved that the chromatic number is always
upper bounded by four times the square of the clique number in any box graph
[3]. The NP-completeness of the k-colorability problem for box graphs has been
established in [9,10]. Furthermore, it has been proved in [13] that the chromatic
number of a box graph is linear in the maximum clique size if the heights of the
rectangles are within a constant factor.

No other published results on chromatic number and minimum vertex coloring
for box graphs are known to the authors.

Our contributions for a box graph G on n vertices are as follows. (i) We
show that if α(G) = Ω(n/ logO(1) n) then MIS of G can be approximated within
O(log n/ log log n) in polynomial time 2 (ii) Furthermore, we show that χ(G) =
O(ω(G) log n) and provide an O(log n) approximation algorithm for minimum
vertex coloring of G. We also generalize the latter results to the intersection graph
G of n d-dimensional orthogonal rectangles, showing χ(G) = O(ω(G) logd−1 n)
and providing O(logd−1 n) approximation for minimum vertex coloring of G.

2 Approximating Large MIS

The overlap of a finite set R of orthogonal rectangles is the maximum number of
rectangles in R overlapping (containing) the same point 3. Note that the overlap
of R is equal to the size of a maximum clique in the box graph induced by
R (cf. [9]). Since it turned out that our following key lemma has been already
mentioned in [5], we moved its proof to the appendix.

Lemma 1. If the overlap of a set of n orthogonal rectangles is O(logO(1) n)
then an O(log n/ log log n) approximation of the maximum independent set of
the corresponding box graph can be computed in polynomial time.

1 In the manuscript [2], a β−1-approximation of MIS is given for box graphs G on n
vertices satisfying α(G) ≥ βn. This improves the logarithmic approximation factor
only in case α(G) = Ω(n/ log n).

2 We have been informed by a referee that the key lemma in the proof of this result
had been already observed by T. Chan in [5].

3 The equivalent terms of depth [5], thickness, and ply are in use in the literature.
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Lemma 1 yields an O(log n/ log log n) approximation of MIS for box graphs with
large MIS.

Theorem 1. Let G be the box graph induced by a set of n rectangles. If α(G) =
Ω(n/ logO(1) n) then an O(log n/ log log n) approximation of MIS for G can be
computed in polynomial time.

Proof. Let cn/ logl n be a specification of Ω(n/ logO(1) n), and let m be the size of
MIS of G. Consider the grid formed by the vertical and horizontal straight-lines
overlapping with the edges of the rectangles. Iterate the following step: whenever
there is a grid point contained in at least 2 logl n/c rectangles then remove all
the rectangles. Note that the remaining set R′ of rectangles has the following
properties: (1) the overlap of R′ is smaller than 2 logl n/c, and (2) the MIS of
the box graph induced by R′ has size at least m/2 which is at least cn/2 logl n.
The property (2) immediately follows from the following three facts: the MIS
of original box graph has cardinality not less than cn/ logl n, each rectangle
iteration can decrease the MIS of the original box graph by one, the number of
the iterations is at most cn/2 logl n. It follows in particular that since R′ has at
least cn/2 logl n rectangles it has a polylogarithmic in its number of rectangles
overlap. Now, it is sufficient to apply Lemma 1 to R′ to obtain the theorem by
the property (2).

3 Relationship Between χ(G) and ω(G)

For a box graph G, its chromatic number χ(G) clearly cannot be smaller than
its maximum clique size ω(G), which in turn is equivalent to the overlap of the
set R of rectangles that induces G by Lemma 5 in [9]. We shall show that up to
a logarithmic factor a reverse relationship holds.

Recall the rectilinear grid formed by the straight-lines passing through the
edges of the input rectangles. We may without loss of generality normalize the
grid by setting the distance between each pair of neighboring grid lines to 1
since such transformation does not change the intersection relationships. Thus,
we may assume without loss of generality that the n input rectangles lie on an
O(n) × O(n) integer grid.

Divide the rectangles into classes Ri, i = 1, ...., O(log n), where a rectangle r
is in Ri iff the width of r is in [2i, 2i+1).

Lemma 2. For each i = 1, ...., O(log n), the subgraph of G induced by Ri can
be colored with 3ti colors, where ti is the overlap of Ri.

Proof. Distinguish the vertical grid lines L whose x coordinates are divisible by
2i+1 (see Fig. 2). Note that any rectangle in Ri can intersect at most one such
line L. We can easily color the set of all rectangles in Ri intersecting a given
line L with ti colors such that no two rectangles of the same color intersect.
We simply sweep a horizontal line and stop at the horizontal edges of rectangles
intersecting L in order to color newly scanned rectangles and/or release colors
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of those disappearing. It follows that all rectangles in Ri intersecting all the
vertical lines L can be colored with 2ti colors (by using ti colors for the rectan-
gles intersecting odd L lines and another ti colors for those intersecting even L
lines). Of course, there might also remain rectangles in Ri that fall between the
lines L. To color them, let us move horizontally the lines L by 2i. Now, each
of the remaining rectangles intersects exactly one of the newly distinguished
vertical lines. Also, no pair of remaining rectangles intersecting different newly
distinguished lines can have a non-empty intersection since otherwise at least
one of the rectangles would intersect one of the lines L. Hence, we can argue
similarly to show that additional ti colors are sufficient to color the remaining
rectangles.

Fig. 1. Coloring the rectangles in Ri

By the definition of the classes Ri and Lemma 2, we obtain immediately our
upper bound on the chromatic number in terms of the overlap parameter, or
equivalently, the maximum clique size.

Theorem 2. For any box graph G on n vertices, χ(G) = O(ω(G) log n) holds.4

4 Approximating Minimum Vertex Coloring

Note that in the proof of Theorem 2, a construction of an O(ω(G) log n) coloring
of G is given. The construction can be easily implemented by using sorting and
standard geometric sweeping techniques (e.g., see [15]) in time O(n log n). Hence,
we obtain the following approximation result.

4 It has been pointed to us that a similar upper bound can be also derived from the
aforementioned result on the linearity of the chromatic number in the maximum
clique size in case the heights of the rectangles are within a constant factor [13].
Indeed, the standard trick of partitioning the rectangles into a logarithmic number
of classes satisfying the latter requirements yields a similar logarithmic upper bound
in the general case. However, our method yields a better constant factor.
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Theorem 3. Given a set of n orthogonal rectangles, we can approximate mini-
mum vertex coloring of the box graph induced by the rectangles within an O(log n)
factor in time O(n log n).

Just in case of constant overlap, one can generalize the divide and conquer k-
line technique for maximum independent set (see Section 2) to include minimum
vertex coloring in order to obtain an O(logk+1 n) approximation factor. On the
other hand, one can easily generalize Theorem 3 to include minimum vertex col-
oring of d-dimensional box graphs, i.e., the intersection graphs of d-dimensional
rectangles.

Theorem 4. Let G be the intersection graph of a set of n orthogonal d-
dimensional rectangles. χ(G) = O(ω(G) logd−1 n) holds and an O(logd−1 n) ap-
proximation of minimum vertex coloring of G can be computed in time O(n log n).

Proof. It is sufficient to prove by induction on d that G can be colored with
O(ω(G) logd−1 n) colors in time O(n log n). For d = 2, this holds by the proof of
Theorems 2 and 3. For d > 2, consider and normalize the O(nd) grid composed
of the d − 1 dimensional hyperplanes including the d − 1 dimensional faces of
the input d-dimensional rectangles. Generalizing the proof of Theorems 2 and 3,
divide the rectangles into classes Ci, i = 1, ...., O(log n) such that a rectangle r
is in Ci iff the size of r along the first axis is in [2i, 2i+1). Next, distinguish these
d−1-dimensional hyperplanes orthogonal to the first axis whose first coordinate
is divisible by 2i+1 and consider the rectangles in Ci that intersect them. Note
that each of the rectangles in Ci can intersect at most one of these hyperplanes.
Hence, by the inductive assumption, we can color all the rectangles in Ci inter-
secting these hyperplanes with at most twice O(ω(G) logd−2 n) colors. To color
the remaining rectangles in Ci we again proceed analogously as in the proof of
Theorems 2 and 3. That is, we just shift the aforementioned hyperplanes by
2i along the first axis, and now each of the remaining in Ci rectangles has to
intersect exactly one of the shifted hyperplanes. Thus, an additional portion of
O(ω(G) logd−2 n) colors is sufficient to color the remaining in Ci rectangles. Since
there are O(log n) classes Ci, we have to use O(ω(G) logd−1 n) colors totally.

The claimed time complexity follows from the inductive hypothesis and the
fact that the n input d-dimensional rectangles can be divided into the Ci classes
in time O(n log n).

5 Final Remarks

Our result on MIS for box graphs with large MIS does not seem to admit any
straightforward generalization to include the intersection graphs of d-dimensional
orthogonal rectangles where d > 2. On the other hand, it can be easily gener-
alized to include the weighted version of MIS. It also partially complements
the aforementioned result of Nielsen which yields substantially sub-logarithmic
factor for box graphs with very small MIS [14].
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Appendix: The Proof of Lemma 1

Proof. We generalize the divide and conquer method of Agarval et al. from [1]
by slicing the set of input rectangles with k equal distant vertical straight-lines
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instead of one (cf. [4]) and returning the maximum of the union of the k + 1 so-
lutions for the MIS of the k + 1 box graphs induced by the k + 1 slices and the
MIS of the box graph induced by rectangles that intersect at least one of the k
vertical straight-lines. By substituting logk+1 n for log2 n and n/(k + 1) for n/2
in the analysis from [1], we obtain an O(logk+1 n) approximation factor for this
method (which agrees with the results in [4] presented in a more general setting).

In order to keep the proof more self-contained, we present the generalized
algorithm and the generalized approximation analysis here.

Let R be a set of n orthogonal rectangles in the plane. Following [1], we
preprocess R by sorting the horizontal edges of R by their y-coordinates and
their vertical edges by their x-coordinates. The preprocessing takes O(n log n)
time. Our refined recursive algorithm depending on a fixed positive integer k is
as follows.

1. If n ≤ k then determine a maximum independent set of rectangles in R by
a brute force method.

2. For i = 1, ..., k, determine the �i2n/(k + 1)� different element xi in the the
sorted list of 2n x-coordinates.

3. Partition the rectangles of R into k + 2 groups R1, R2, ...,Rk+1 and R∗

such that R1 contains rectangles lying to the left of the line x = �2n/(k +
1)�, for i = 2, ..., k, Ri contains the rectangles lying between the lines x =
�(i − 1)2n/(k + 1)� and �i2n/(k + 1)�, Rk+1 contains rectangles lying to the
right of the line x = �k2n/(k + 1)�, and finally R∗ consists of all rectangles
intersecting the k aforementioned vertical lines.

4. Compute a maximum independent set I∗ of R∗. Recursively compute ap-
proximate independent sets Ii for Ri, for i = 1, ..., k + 1 respectively.

5. If |I∗| ≥
∑k+1

i=1 |Ii| then return I∗ otherwise return
⋃k+1

i=1 Ii.

The disjointness of the sets R1 through Rk+1 guarantees that the generalized
algorithm always returns an independent set of rectangles in R.

Our proof of the asserted approximation factor is a natural generalization of
the proof of the O(log2 n) approximation factor for the simple algorithm from [1].
For a set of rectangles Q let mis(Q) denote the maximum size of an independent
set of rectangles in Q. We prove by induction on the number of input rectangles
that the independent set returned by generalized recursive algorithm is of size
not less than mis(R)/ max{k, logk+1 n}. By step 1 of this algorithm, we may
assume w.l.o.g n > k. Suppose that induction hypothesis is true for all n′ < n.
Let I be a maximum independent set in R. Since the set I∗ computed by the
generalized algorithm is a maximum independent set of rectangles in R∗, we
have |I∗| ≥ |I ∩ R∗|.) By the induction hypothesis, we have for i = 1, ..., k + 1,

|Ii| ≥ mis(Ri)
logk+1 (n/(k + 1))

.
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Hence, we obtain max{|I∗|,
∑k+1

i=1 |Ii|} ≥

max{|I ∩ R∗|,
∑k+1

i=1 |I ∩ Ri|
logk+1 n − 1

} ≥ max{|I ∩ R∗|, |I| − |I ∩ R∗|
logk+1 n − 1

}.

If |I ∩ R∗| ≥ |I|/ logk+1 n, the induction step follows. Otherwise, we have the
inequality:

∑k+1
i=1 |I ∩ Ri|

logk+1 n − 1
≥

|I| − |I|/ logk+1 n

logk+1 n − 1
=

|I|
logk+1 n

.

By proving that the maximum independent set I∗ of rectangles in R∗ can be
computed in time nO(k), one can immediately obtain a polynomial-time perfor-
mance of this algorithm for k = O(1) (cf. [4]).

Fig. 2. The k vertical lines intersected by the horizontal line L

To show that I∗ can be still computed in polynomial time for k = O(log n/
log log n) under the overlap assumption (see Fig. 1), we make the following key
observation.
For any horizontal straight-line L the set SL of the input rectangles which can
intersect L and simultaneously at least one of the k vertical lines has cardinality
O(k logO(1) n).

It follows that the family of at most
∑k

i=1

(
O(k logO(1) n)

i

)
sets of non-overlapping

rectangles which are subsets of SL is of polynomial cardinality for k = O(log n/
log log n). Consequently, I∗, which is a MIS of the box graph induced by the
input rectangles that intersect at least one of the O(log n/ log log n) vertical
straight-lines, can be computed in polynomial time as follows 5.

Sweep the horizontal line L top-down stopping whenever L overlaps with an
edge of a rectangle in R. At each stop, inductively compute for each subset
S of SL with no overlapping rectangles an independent set including S and
maximum number of rectangles above L intersecting one of the k vertical lines.
5 One can also follow the method of Lemma 15 in [4] with the aforementioned subsets

corresponding to the so called cuts in [4].
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More precisely, if L′ stands for the the preceding position of L and S′ = S ∩ SL′

then the aforementioned independent set can be inductively obtained by merging
S \ S′ with a largest among independent sets composed of a set S′′, where
S′′ ⊂ SL′ and S′ ⊂ S′′, and maximum number of rectangles above L′ intersecting
one of the k vertical lines.

We conclude that the generalized algorithm can be implemented in polynomial
time for k = O(log n/ log log n) under the overlap assumption. This combined
with the proved O(logk+1 n) approximation factor of the algorithm yields the
O(loglog n/ log log n n) = O(log n/ log log n) approximation in polynomial time.
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Abstract. The best known algorithm for the one-to-all shortest path
problem is Dijkstra’s algorithm, which can achieve time complexity
O(|E|+ |V | log(|V |)) by the implementation of data structures like buck-
ets. While for one-to-some shortest path problem, no matter how small
the “some” is, the time complexity of Dijkstra’s algorithm remains
O(|E|+ |V | log(|V |)) and it often still needs to explore a large part of the
graph and thus is not efficient. This paper proposes a novel algorithm
which computes the shortest paths bidirectionally with A∗ algorithm
multiple times to solve the one-to-some shortest path problem on road
maps efficiently, where the size of the destination set is much smaller
than the total number of vertices in the graph. The experiments on both
randomly generated graphs and real road maps show that our algorithm
is more space and time efficient than Dijkstra’s algorithm with buck-
ets, one of the most efficient algorithm for one-to-some shortest path
problem.

1 Introduction

Single source shortest path problem (SSSP ) over varies graphs is a fundamental
problem which has lots of applications in many areas, such as the network rout-
ing problem, the vehicle routing problem and Geographical Information Systems
(GIS). The single destination shortest path problem (SDSP ), which leads to
more applications, can be considered as the complement of the SSSP : we just need
to reverse the shortest paths computed from the destination to all the sources.
Therefore an efficient algorithm for these problems is of great importance.

The most widely used algorithm for one-to-all shortest path problem, which
aims to find the shortest paths from a single source to all the other vertices
in the graph, is Dijkstra algorithm [1]. With smart implementations such as
using the data structure of buckets [14], Dijkstra’s algorithm solves the one-
to-all shortest path problem in O(|E| + |V | log(|V |)) time on a directed graph
G = (V, E) with no negative edges. Lots of work has been done to improve the
naive implementation of Dijkstra’s algorithm by varies data structures [6,7,8,9].
For a long time Dijkstra’s algorithm has been believed to be the best algorithm
for computing shortest paths from single source to multiple destinations.

M.-Y. Kao and X.-Y. Li (Eds.): AAIM 2007, LNCS 4508, pp. 346–357, 2007.
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While Dijkstra’s algorithm is efficient and simple for computing shortest paths
from single source to all the other vertices in the graph, it’s often not efficient to
solve the one-to-some shortest path problem, which aims to find shortest paths
from a single source to a set of destinations T ⊂ V , where |T | � |V | and |V | is the
total number of vertices in the graph. This is because Dijkstra’s algorithm always
expands the vertex in best-first order, namely the vertex closest to the source, no
matter how far it is to the destination. Therefore if one destination is far from the
source, Dijkstra’s algorithm may need to explore a large part of the graph to find
the shortest path to that destination. No matter how small the “some” is, the
time complexity of Dijkstra’s algorithm for one-to-some shortest path problem
still remains O(|E| + |V | log(|V |)). For single source single destination problem
(SSSD), or one-to-one problem, many heuristic search algorithms have been
developed. One of the most famous algorithms is the A∗ algorithm [2], which
uses a heuristic estimator to improve the efficiency of the Dijkstra’s algorithm.

In this paper, we present a novel application of A∗ algorithm, for the one-
to-some shortest path problem on road maps where the destination set is much
smaller than the vertex set of the graph. By applying A∗ algorithm bidirection-
ally multiple times, we can achieve significant improvements on both time and
space requirements. Our experiments on both randomly generated graphs and
real road map show that our algorithm is more efficient than the implementation
of Dijkstra’s algorithm with buckets [14], one of the most efficient algorithm for
the one-to-some shortest path problem.

The outline of this paper is as follows: In Section 2 we summarize the Dijk-
stra’s algorithm, A∗ algorithm, bidirectional algorithm and the algorithms from
Shibuya. In Section 3 we introduce our novel algorithms. We show our experi-
ment results in Section 4 and we include our final remarks in Section 5.

2 Preliminaries

The original Dijkstra’s algorithm [1] aims to compute the shortest paths from a
single source to all the other vertices in the graph. It can be modified easily to
compute shortest paths from single source to a set of destinations.

Let G = (V, E) be a directed graph with no negative edges, s ∈ V be the
source, T = {t1, t2, ..., tm} be the set of destinations, and l(u, v) be the length
of the edge (u, v) ∈ E. The Dijkstra’s algorithm expands the vertex in best-first
order, updates the score of v for each vertex v accordingly and stops if all the
destinations are expanded. It is obvious that Dijkstra’s algorithm always expands
the vertex closest to the source first no matter how far the vertex is to the
destination. Therefore if one of the destinations is far from the source, Dijkstra’s
algorithm may need to explore a large part of the graph to reach that destination.

Lots of work has been done on improving the performance of Dijkstra’s al-
gorithm [6,7,8,9]. Zhan [4] showed that one of the currently fastest algorithms
for one-to-some shortest path problem is the implementation of Dijkstra’s algo-
rithm with buckets [14]. In the original Dijkstra’s algorithm, searched vertices are
treated as a non-ordered list. In order to find the right vertex to be expanded next,
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at each iteration we need to go though the whole explored vertices list, which turns
out to be a bottleneck operation. This problem can be handled well by using buck-
ets to maintain the explored vertices in a sorted fashion according to their cur-
rent found distances from the source. The explored vertices with the same current
found distances are kept in the same bucket and the vertices in each bucket are in
FCFS manner. The time complexity of Dijkstra’s algorithm with buckets (Dial’s
implementation [14]) is O(|E| + |V |C)), where C is the number of buckets.

The A∗ algorithm [2] extends the Dijkstra’s algorithm by taking into a heuris-
tic function h(u) from every vertex u in the graph to the destination t, which
is a lower bound on the distance of shortest path from u to t. And the score
for each vertex u is not simply the distance of u to the source g(u), but the
score of f(u) = g(u) + h(u). Therefore the A∗ algorithm prefers vertices close
to both source and destination and can find the shortest path more efficiently
than simple Dijkstra’s algorithm. The vertices on the search frontier are stored
in an Open list, and the already-expanded vertices are stored in a Closed list.
The A∗ algorithm can then build a shortest path tree from s to t, by updating
the backtrack-pointer of each vertex to its latest parent. The shortest path from
each vertex v on the tree to s can be obtained by tracing back from v to s along
the tree. And by reversing the shortest path from v to s, we can also obtain the
shortest path from s to v.

The bidirectional algorithm [3] applies the Dijkstra algortithm simultaneously
from both the source s and the destination t. The algorithm terminates if the
forward and backward explorations meet each other. Then the shortest distance
is the minimum value of l(f, b)+ps(f)+pt(b), where f is a vertex in the forward
exploration vertex set ps and b is a vertex in the backward exploration vertex
set pt such that (f, b) ∈ E and l(f, b) + ps(f) + pt(b) is minimized, l(f, b) is
the length of the edge (f, b), ps(f) is the shortest distance from s to f , and
pt(b) is the shortest distance from t to b. The shortest path can be obtained by
combining the s-f shortest path, edge (f, b) and the b-t shortest path.

One trivial way of combining the ideas of A∗ algorithm and the bidirectional
algorithm is to run the A∗ algorithm in two directions simultaneously and stop as
soon as they meet. This does not work, however, if the heuristic function for the
forward A∗ search hf () and for the backward A∗ search hb() are not consistent
[10]. The hf () and hb() are consistent if for any arc e(u, v), hf(u, v) is equal
to hb(v, u), where hf (u, v) is the heuristic estimator from u to v in the original
graph and hb(v, u) is the heuristic estimator from v to u in the reverse graph.
This actually indicates that hf (v)+hb(v)=const for every vertex v. Therefore
if we use the same heuristic function for both the forward and backward A∗

searches, the optimal shortest path is guaranteed.
The algorithms from Sanders and Schultes [13] and Goldberg et al. [11] achieve

significant improvements over Dijkstra’s algorithm by preprocessing the road
network. They show that using preprocessing, the query time can be improved
greatly. However, their algorithms are special for SSSD problem and what’s
more, they assume preprocessing is allowed, which does not meet the requirement
of this paper.
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For SSSD problem, or one-to-one shortest path problem, A∗ algorithm and
bidirectional algorithm often perform much better than simple Dijkstra’s algo-
rithm, but for a long time they are believed to be only applicable to one-to-one
shortest path problem but not to one-to-some, one-to-all, or all pairs shortest
path problems. Direct application of these two algorithms to the above prob-
lems often results in poor performances. Shibuya [5] first introduced 2 modified
A∗ algorithms to the n × m shortest path problem on real road networks: the
Euclidean-distance-based A* algorithm and the bidirectional-method-based A* al-
gorithm. Due to the space limit, we refer the readers to [5] for the detail of these
algorithms.

3 New Applications of A* Algorithm to One-to-Some
Shortest Path Problem on Road Maps

3.1 BMA∗ Algorithm

In our algorithm, we first pick one destination t and use ordinary A∗ algorithm to
find the shortest path from the source s to t (we call forward A* search). We can
thus obtain a shortest path tree Ts. Then we apply A∗ algorithm multiple times
from each destination ti ∈ T/{t}, to the source s (we call backward A* search).
And we know with monotonic heuristic estimators, if v is an expanded vertex on
the shortest path tree Ts built by A∗ algorithm from source s to the destination
t, the path from s to v along the tree Ts must be the shortest path from s to
v in the graph G [10]. Once the backward A∗ search expands a vertex v which
has been expanded already by the forward A∗ search, we can stop immediately
and obtain the shortest path from s to ti by combining the path from s to v
along the tree Ts and the path from v to ti along the shortest path tree built
by the backward A∗ search. This is similar to the bidirectional A∗ algorithm for
Shibuya [5], with the differences that we do forward A∗ search and backward
A∗ search separately instead of doing them simultaneously, and we do backward
A∗ searches multiple times. However, bidirectional A∗ algorithm is designed for
n ×m shortest paths problem where n, m are large. It is not suitable for one-to-
some shortest paths problem. Due to space limit, we put the detailed analysis
of bidirectional A∗ algorithm in the journal version of this paper. Since this
algorithm searches in two directions with A∗ algorithm multiple times, we call it
the Bidirectional-Multiple A* algorithm (BMA∗). And since we use Euclidean
distance as our heuristic estimator for both forward and backward A∗ searches,
the optimal shortest paths are guaranteed to be found correctly.

A key problem of our algorithm is how to find the destination on which we are
going to apply forward A∗ search. We hope to find the destination whose corre-
sponding shortest path tree built by forward A∗ search expands many vertices so
that the backward A∗ searches are highly possible to expand those vertices and
then stop quickly. We take a simple way here: choose the destination with the
highest heuristic value, by the assumption that the higher the heuristic value of
the destination is, the more vertices the corresponding forward A∗ search would
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probably expand. For example, for the shortest path problem on real road net-
works where we can use the euclidian distance as the heuristic estimator, we
apply the forward A∗ search on the destination with the greatest euclidian dis-
tance to the source. Our experiments on both randomly generated graphs and
real road map show that this strategy is simple but surprisingly successful.

For all the backward A∗ searches, during the search processes we should store
the heuristic estimator for each newly explored vertex so that the same heuristic
estimator of this vertex can be reused by all backward A∗ searches.

When the source and the destinations are in two distant clusters and when
the destinations are close to each other, BMA∗ algorithm often explores much
less vertices than Dijkstra’s algorithm does. Because in these cases the backward
A∗ searches are highly possible to meet the vertices expanded by the forward A∗

search and then stop quickly. While if the destinations are sparsely distributed
around the source, simple application of BMA∗ algorithm can perform worse
than Dijkstra’s algorithm, because the possibilities of the backward A∗ searches
to meet the vertices expanded by the forward A∗ search are comparatively low.
An extreme case can be shown in the real road network. If the destination with
the highest heuristic value, namely the greatest euclidian distance to the source,
is on one side of the source while all the other destinations are on the opposite
side, the backward A∗ searches nearly couldn’t meet any vertices expanded by
the forward A∗ search.

3.2 Improved BMA∗ Algorithms

In this subsection we propose two strategies to improve the performances of
BMA∗ algorithm and make it suitable to both situations where the source and
the destinations are in distant clusters (we call “distant” case) and where the
destinations are sparsely distributed around the source (we call “sparse” case).

First, not just choose one destination for the forward A∗ search, but choose
a forward search set F which consists of multiple destinations. Our algorithm is
still based on the assumption that the farther the destination to the source is, the
more vertices the corresponding forward A∗ search would probably expand. And
for destinations ti and tj , without loss of generality, we assume h(ti) > h(tj),
where h() is the heuristic function. Then we first apply forward A∗ search from
source s to ti and if the angle between radials sti and stj is less than a threshold
d, the backward A∗ search from tj would probably meet the vertices expanded
by forward A∗ search from s to ti, or else we’d better use forward A∗ searches
on both ti and tj . Our experiments show that when we set the threshold as 45
degree, the forward feature set strategy works well.

For the shortest path problem on road maps, the above algorithm cuts the
2-dimensional space into several pie-slice sectors centered at source s, each con-
taining a cluster of destinations. We then apply BMA∗ algorithm on each sector,
namely for each ti ∈ F , we apply forward A∗ search from the source s to ti, store
the expanded vertices for all the forward searches and we store each vertex only
once. Then we apply backward A∗ search on each tj ∈ T/F and store the heuris-
tic estimator for each vertex for the purpose of reuse. And because |F | can be
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at most 360/d, this algorithm takes O(360m/d + m log m) time given the size
of the destination set as m, where the O(m log m) factor is the time for sorting
the destinations. Since m � |V |, and we set d as 45 degree, the time for this
preprocessing step is of no importance and therefore can be ignored.

Second, the success of BMA∗ algorithm depends on whether the forward A∗

searches can expand many vertices which may be reexpanded by the backward
A∗ searches. If we can enlarge the search space of the forward A∗ searches, it is
more possible for the backward A∗ searches to meet the vertices expanded by
the forward A∗ searches and stop as soon as possible. One simple way to enlarge
the number of vertices expanded by forward A∗ searches without loss of heuristic
power is to simply divide the heuristic estimator h by a factor ε > 1.

Theorem 1. If h is a monotonic estimator for the A∗ algorithm in graph G,
h/ε is also a monotonic estimator, for some ε ≥ 1.

Proof. A heuristic function h() is monotonic if for any nodes u and v, l(u, v) +
h(v) ≥ h(u). Since h is monotonic, we can derive the inequality l(u, v) + h(v) ≥
h(u), where u, v are vertices in graph G, l(u, v) is the length of edge (u, v) in
graph G and l(u, v) ≥ 0.

l(u, v) + h(v) ≥ h(u) ⇒ l(u, v) ≥ h(u) − h(v)
⇒ l(u, v) ≥ (h(u) − h(v))/ε, for ε ≥ 1
⇒ l(u, v) + h(v)/ε ≥ h(u)/ε

Therefore h/ε (ε ≥ 1) is also monotonic and can guarantee an optimal solution.

Since h(v) is a lower bound for the real distance of vertex v to destination t,
a higher value of h(v) stands for a tighter lower bound and therefore can reduce
the search space and a lower value of h(v) stands for a looser lower bound and
will enlarge the search space. So h(v)/ε for some ε > 1 is a looser lower bound
compared with the original h(v) and will enlarge the search space. Notice we
only modify the heuristic estimators for the forward A∗ searches and keep the
heuristic estimators for backward A∗ searches the same as before. We call the
BMA∗ algorithm with heuristic estimators as h/ε (ε ≥ 1) for the forward A∗

searches the BMA∗-ε algorithm.
The new heuristic estimator h(v)/ε for some ε > 1 is a tradeoff since although

it makes the backward searches more efficient, the forward searches are going to
search more vertices. Our experiments show that this method behaves well on
big destination sets where backward searches benefit more by picking a looser
heuristic function for forward searches.

4 Experiments

4.1 Experiments on Random Generated Graphs

We do all the experiments on randomly generated graphs where we can use
Euclidean distance as the heuristic estimator. And we try to generate random
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#destinations #searched vertices #loaded vertices

10 45, 780/8, 324 9, 439/3, 180

20 45, 994/10, 249 9, 594/3, 536

30 48, 453/16, 262 9, 763/4, 002

40 48, 897/30, 058 9, 777/4, 229

50 49, 962/40, 250 9, 850/4, 837

Dijkstra/BMA*

Fig. 1. The numbers of searched vertices and loaded vertices of Dijkstra’s algorithm
and BMA∗ algorithm respectively on randomly generated graphs with 10,000 vertices,
25,000 arcs. The l-to-e ratio is set as ≤ 2. The source and destinations are in distant
clusters.

graphs close to the real road networks. According to the experiments in [4] and
[5], we set the arc-to-node ratios as 2.5. We build our graph in a 10, 000×10, 000
two dimensional grid and set the location for each vertex as a pair of (x, y)
coordinates in Euclidean space. The coordinates for each dimension is from 0 to
10,000. We randomly generate graphs with 10,000 vertices and 25,000 arcs on
this 10, 000×10, 000 two dimensional grid. We set the euclidian distance between
the two terminals of each arc be no more than 1,500, and according to [4], we
try to eliminate the irregularity of the graph that two vertices are “close” to
each other in their locations but “far” from each other in their real distance.
We set the ratio of arc length to euclidian distance (we call l-to-e ratio) be no
more than 2. And the number of destinations |T | in our experiments is always
much less than the total number of vertices |V |. We use Euclidean distance as
heuristic function for both forward and backward A∗ searches. All experiments
are done on an Intel Xeon 2.4GHZ processor with 2GB memory.

4.1.1 Source and Destinations Are in Distant Clusters
We randomly pick a vertex as the source in the circle centered at (3000,3000)
with radius as 500. And we randomly pick the destinations in the circle centered
at (7000,7000), with radius as 1000. All the vertices including source and desti-
nations are randomly generated. The size of destination set varies from 10 to 50.
And for each destination set size, we do our experiments on ten randomly gen-
erated graphs and show the average performance of each algorithm. Since this is
”distant” case, we do not consider BMA∗-ε algorithm and we only compare the
number of searched vertices and the number of loaded vertices for BMA∗ algo-
rithm and the Dijkstra’s algorithm. #searched vertices is the total number of
vertices searched by all searches, both forward and backward. #loaded vertices
is the total number of vertices loaded into memory. And notice that the searched
and loaded vertices for simple Dijkstra’s algorithm and Dijkstra’s algorithm with
buckets are exactly the same.

In Figure 1, we show our experiment results for 10, 20, 30, 40, 50 destinations,
respectively. We can see that for only 10 destinations, the Dijkstra’s algorithm
searches already as many as 45, 780 vertices and loads most of the vertices in the
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#destinations #searched vertices #loaded vertices

40 35, 101/26, 621/17, 052 8, 039/5, 271/5, 757

50 39, 153/53, 109/20, 671 8, 611/6, 174/6, 216

80 47, 999/45, 494/21, 112 9, 752/5, 817/6, 107

90 38, 589/72, 692/27, 174 8, 090/5, 619/5, 676

Dijkstra/BMA∗/BMA∗-10

Fig. 2. The numbers of searched vertices and loaded vertices of Dijkstra’s algorithm,
BMA∗ algorithm and BMA∗-10 algorithm, respectively on randomly generated graphs
with 10,000 vertices, 25,000 arcs. The l-to-e ratio is set as ≤ 2. The destinations are
sparsely distributed around the source.

graph. And BMA∗ algorithm searches only 1/6th vertices and loads 1/3th ver-
tices of those by Dijkstra’s algorithm. With the increase of the size of destination
set, the numbers of searched vertices and loaded vertices by Dijkstra’s algorithm
increase slowly but these by BMA∗ algorithm increase fast. Therefore the advan-
tage of BMA∗ algorithm over Dijkstra’s algorithm on space requirement is more
significant for comparatively small destination set size. This is quite reasonable
since the larger the destination set is, the more vertices the BMA∗ algorithm
explores and loads. Our experiments show that for destination set size under 50,
our BMA∗ algorithm loads only 1/3th to 1/2th of the number of vertices loaded
by Dijkstra’s algorithm.

4.1.2 Destinations Are Sparsely Distributed Around the Source
We randomly pick a vertex as the source in the circle centered at (3000,3000)
with radius as 500. And we randomly pick the destinations in the circle centered
also at (3000,3000), with radius as 5000. We set the size of the destination set
as 40, 50, 80, 90, respectively. And we set the threshold in the algorithm for
computing the forward feature set as 45 degree. We compare the numbers of
searched vertices and loaded vertices by Dikstra algorithm, BMA∗ algorithm
and BMA∗-10 algorithm, respectively. Both the BMA∗ algorithm and BMA∗-
10 algorithm use forward search set method. And we set the l-to-e ratio as ≤ 2.
For each destination set we do independent tests on ten randomly generated
graphs and show the average performance of each algorithm.

As shown in Figure 2, the results are quite similar to those shown in Figure 1.
With the increase of the destination set size to be more than 50, the number of
searched vertices increases quickly to be larger than that by Dijkstra’s algorithm.
While by dividing the heuristic estimator by 10, as the BMA∗-10 algorithm does,
we can reduce the number of searched vertices to nearly half of the original. And
we can also see that the number of loaded vertices by BMA∗ algorithm are
close to that by BMA∗-10 algorithm, both of which are much less than that by
Dijkstra’s algorithm.

We also compare the execution time in both cases for simple Dijkstra’s algo-
rithm, Dijkstra’s algorithm with buckets, the BMA∗ algorithm, the BMA∗-10
algorithm. As stated before, we do not consider BMA∗-ε algorithm for ”distant”
case. As shown in Figure 3, the simple implementation of Dijkstra’s algorithm
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Fig. 3. The execution times (sec.) for simple implementation of Dijkstra’s algorithm,
the implementation of Dijkstra’s algorithm with buckets, the BMA∗ algorithm and the
BMA∗-10 algorithm respectively, on randomly generated graphs with 10,000 vertices,
25,000 arcs. In ”distant” case, we do not consider BMA∗-10 algorithm.

spends much more time than the other three algorithms. For small destination
sets, the execution times of BMA∗ algorithm are quite close to those of BMA∗-
10 algorithm. While for comparatively large destination sets, e.g. the destination
set size of 40, 50 in “distant” case, the destination set sizes of 80, 90 in “sparse”
case, the BMA∗-10 algorithm runs faster than BMA∗ algorithm. Since the num-
ber of searched vertices for Dijkstra’s algorithm does not change much with the
increase of the destination set size, its execution times remain close for different
destination set sizes and therefore it’s inefficient for comparatively small destina-
tion set. While for BMA∗ algorithm and BMA∗-10 algorithm, their execution
times are largely affected by the destination set size. Therefore for small destina-
tion set sizes they can be much faster than Dijkstra’s algorithm with buckets but
as the number of destinations increases, they will spend more and more time on
computing heuristic estimators and finally be slower than Dijkstra’s algorithm
with buckets.

4.2 Experiments on Real Road Network

We apply our BMA∗ algorithm on real road map for Chittenden County, Ver-
mont. This is a two-dimensional map with 2727 vertices and 3038 arcs in the
bounding box with (−29861.0ft, −103025.6ft) and (111551.6ft, 102624.5ft) as
the left-bottom and right-top corners. The location of each vertex is a pair of
coordinates (x,y) in Euclidean space. We use Euclidean distance as heuristic
function for both forward and backward A∗ searches. All experiments are done
on an Intel Xeon 2.4Ghz processor with 2GB memory. Since this real road map
is much smaller than those randomly generated graphs, we set ε as 2 for the
BMA∗-2 algorithm. Since we have already showed that simple Dijkstra’s algo-
rithm performs much worse than the other algorithms, we do not consider it here.

4.2.1 Source and Destinations Are in Distant Clusters
We randomly pick up the source vertex in a circle centered at (75000ft, 75000ft)
with radius 2000ft. And we randomly choose destination vertices in a circle
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Fig. 4. The numbers of loaded vertices and the execution times (sec.) of Dijkstra’s
algorithm with buckets, BMA∗ algorithm and BMA∗-2 algorithm, respectively, on
real road map Chittenden County, Vermont, with 2727 vertices and 3038 arcs. The
source and destinations are in distant clusters.

0

400

800

1200

1600

2000

5 10 20 

Dijkstra with
buckets

BMA*

BMA*-2

          #loaded VS #destination time(S.) VS #destination

0

0.001

0.002

0.003

0.004

0.005

5 10 20 

Fig. 5. The numbers of loaded vertices and the execution times (sec.) of Dijkstra’s
algorithm with buckets, BMA∗ algorithm and BMA∗-2 algorithm, respectively, on
real road map Chittenden County, Vermont, with 2727 vertices and 3038 arcs. The
destinations are sparsely distributed around the source.

centered at (10000ft, 10000ft) with radius 40000ft. We then compare the num-
bers of searched vertices and loaded vertices for our BMA∗ algorithm, BMA∗-2
algorithm and the Dijkstra’s algorithm with Buckets, and the execution time for
each algorithm. We show the average result of 10 tests for each destination set
size. The experiment results are shown in Figure 4.

4.2.2 Destinations Are Sparsely Distribute Around the Source
We randomly pick up the source vertex in a circle centered at (10000ft, 10000ft)
with radius 2000ft. And we randomly choose destination vertices in a circle cen-
tered also at (10000ft, 10000ft) with radius 30000ft. We compare the numbers
of searched vertices and loaded vertices for our BMA∗ algorithm, BMA∗-2 al-
gorithm and the Dijkstra’s algorithm with Buckets, and the execution time for
each algorithm. We show the average results of 10 tests for each destination set
size. The experiment results are shown in Figure 5.

As shown in Figure 4 and Figure 5, we can see that on this real road map,
the experiment results for both “distant” and “sparse” cases are similar to those
on randomly generated graphs. Since the numbers of vertices and arcs are much
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smaller than the previous randomly generated graphs, the execution times of
BMA∗ algorithm and BMA∗-2 algorithm exceeds that of Dijkstra’s algorithm
with buckets when destination set size is larger than 30. But the vertices-to-
destinations ratios |V |/|T | (70 to 400) are even better than that in our randomly
generated graphs (200 to 1000) and that in the experiments of Shibuya [5] (3000
to 10000), which indicates that our BMA∗ algorithm can indeed handle much
larger destination sets for large scale graphs. The number of loaded vertices by
Dijkstra’s algorithm is always much larger than that by BMA∗ algorithm and
BMA∗-2 algorithm.

5 Conclusion

We have proposed a novel algorithm for one-to-some shortest path problem,
where the size of the destination set is much smaller than the total number of
vertices in the graph. The experiments on both randomly generated graphs and
real road map revealed that by applying A∗ algorithm bidirectionally multiple
times, our BMA∗ algorithm makes significant improvements on the implemen-
tation of Dijkstra’s algorithm with buckets, one of the most efficient algorithms
for one-to-some shortest path problem, both on time and space requirements.
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Abstract. In this paper we establish a general algorithmic framework
between bin packing and strip packing, with which we achieve the same
asymptotic bounds by applying bin packing algorithms to strip packing.
More precisely we obtain the following results: (1) Any offline bin packing
algorithm can be applied to strip packing maintaining the same asymp-
totic worst-case ratio. Thus using FFD (First Fit Decreasing Height) as a
subroutine, we get a practical (simple and fast) algorithm for strip pack-
ing with an upper bound 11/9. (2) A class of Harmonic-based algorithms
for bin packing can be applied to online strip packing maintaining the
same asymptotic competitive ratio. It implies online strip packing admits
an upper bound of 1.58889 on the asymptotic competitive ratio. This sig-
nificantly improves the previously best bound of 1.6910 and affirmatively
answers an open question posed in [5].

1 Introduction

In strip packing a set of rectangles with widths and heights both bounded by
1, is packed into a strip with width 1 and infinite height. Rectangles must be
packed such that no two rectangles overlap with each other and the sides of
the rectangles are parallel to the strip sides. Rotations are not allowed. The
objective is to minimize the height of the strip to pack all the given rectangles.
If we know all rectangles before constructing a packing, then this problem is
offline. In contrast in online strip packing rectangles are coming one by one and
a placement decision for the current rectangle must be done before the next
rectangle appears. Once a rectangle is packed it is never moved again.

It is well known that strip packing is a generalization of bin packing. Namely
if we restrict all input rectangles to be of the same height, then strip packing is
equivalent to bin packing. Thus any negative results for bin packing still hold
for strip packing. More precisely, strip packing is NP-hard in the strong sense
and the lower bound 1.5401 [15] is valid for online strip packing.
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Previous results. For the offline version Coffman et al. [4] presented algo-
rithms NFDH (Next Fit Decreasing Height) and FFDH (First Fit Decreasing
Height), and showed that the respective asymptotic worst-case ratios are 2 and
1.7. Golan [6] and Baker et al. [2] improved it to 4/3 and 5/4, respectively. Us-
ing linear programming and random techniques, an asymptotic fully polynomial
time approximation schemes (AFPTAS) was given by Kenyon and Rémila [9].
In the online version Baker and Schwarz [3] introduced an online strip packing
algorithm called a shelf algorithm. A shelf is a rectangular part of the strip with
width one and height at most one so that (i) every rectangle is either completely
inside or completely outside of the shelf and (ii) every vertical line through
the shelf intersects at most one rectangle. Shelf packing is an elegant idea to
exploit bin packing algorithms. By employing bin packing algorithms Next Fit
and First Fit Baker and Schwarz [3] obtained the asymptotic competitive ra-
tios of 2 and 1.7, respectively. This idea was extended to the Harmonic shelf
algorithm by Csirik and Woeginger [5], obtaining an asymptotic competitive ra-
tio of h∞ ≈ 1.6910. Moreover it was shown that h∞ is the best upper bound
a shelf algorithm can achieve, no matter what online bin packing algorithm is
used. Note that there were already several algorithms for online bin packing
that have asymptotic competitive ratios better than h∞ in late 80s and early
90s [10,11,12,16]. However, it was shown that whether these online algorithms
can be applied to the online strip packing problem is an open question [5].

The core of shelf packing is reducing the two-dimensional problem to the
one-dimensional problem. Basically shelf algorithms consist of two steps. The
first one is shelf design which only takes the heights of rectangles into account.
One shelf can be regarded as a bin with a specific height. The second step is
packing into a shelf, where rectangles with similar heights are packed into the
same shelves. This step is done by employing some bin packing algorithm to
pack the rectangles with a total width bounded by one into a shelf. Clearly, to
maintain the quality of bin packing algorithms in shelf packing we must improve
the first step. Along this line we make the following contributions.

Our contributions. We propose a batch packing strategy and establish a gen-
eral algorithmic framework between bin packing and strip packing. It is shown
that any offline bin packing algorithm can be used for offline strip packing main-
taining the asymptotic worst-case ratio. As an example, the well known bin pack-
ing algorithm FFD can approximate strip packing with an asymptotic worst-case
ratio of 11/9. A simple AFPTAS can easily be derived from [8].

For online strip packing, we affirmatively answers the above question by show-
ing that a class of online bin packing algorithm based on Super Harmonic algo-
rithm [13] can be used in online strip packing maintaining the same asymptotic
competitive ratio. This result implies that the known Harmonic based bin pack-
ing algorithms [10,11,12,13] can be converted into online strip packing algorithms
without changing their asymptotic competitive ratios (better than h∞). Note
that the current champion algorithm for online bin packing is Harmonic++ by
Seiden [13], which has an asymptotic competitive ratio of 1.58889. Hence strip
packing admits an online algorithm with the same upper bound of 1.58889.
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Main ideas. Recall that the strip packing problem becomes the bin packing
problem if all rectangles have the same height. This motivates us to convert
the strip packing problem into the bin packing problem by constucting a set
of new rectangles called slips with the same height by bundling a subset of
items. Then we just call the algorithm in the bin packing problem to pack the
generated slips into the strip. More precisely, in the offline case, we pack in batch
the rectangles with similar width into rectangular boxes (slips) of pre-specified
height of c, where c > 1 is a sufficiently large constant. Then we obtain a set of
new rectangles (slips) of the same height. The next step is to use bin packing
algorithms on the new set. In the on-line case the strategy is slightly different.
We divide the rectangles into two groups according to their widths, to which we
apply the above batching strategy and the standard shelf algorithms respectively.

Asymptotic worst-case (competitive) ratio. To evaluate an approxima-
tion (online) algorithms for strip packing and bin packing we use the standard
measure defined as follows.

Given an input list L and an approximation (online) algorithm A, we denote
by OPT (L) and A(L), respectively, the height of the strip used by an optimal
(offline) algorithm and the height used by (online) algorithm A for packing list L.

The asymptotic worst-case (competitive) ratio R∞
A of algorithm A is defined

by
R∞

A = lim
n→∞ sup

L
{A(L)/OPT (L)|OPT (L) = n}.

2 The Offline Problem

Given a rectangle R, throughout the paper, we use w(R) and h(R) to denote its
width and height, respectively.

Fractional strip packing. A fractional strip packing of L is a packing of any
list L′ obtained from L by subdividing some of its rectangles by horizontal cuts:
a rectangle (w, h) can be replaced by a sequence (w, h1), (w, h2), ..., (w, hk) of
rectangles such that h =

∑k
i=1 hi.

Homogenous lists. Let L and L′ be two lists where any rectangle of L and
L′ takes a width from q distinct numbers w1 > w2 > · · · > wq. List L is r-
homogenous to L′ where r ≥ 1 if for i = 1, 2, . . . , q,

∑

w(R′)=wi,R′∈L′

h(R
′
) ≤

∑

w(R)=wi,R∈L

h(R) ≤ r ·
∑

w(R′ )=wi,R′∈L′

h(R
′
).

The following lemma is from Section 3.1 of the paper [9].

Lemma 1. There is an approximation algorithm such that the cost by the algo-
rithm for packing a list L of rectangles is bounded by

max{(1 + ε)s(L), OPTFSP (L)} + O(ε−2),

where s(L) is the total area of all the rectangles in L and OPTFSP (L) is the
optimal value of fractional strip packing for the list L.
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The following lemma is an implicit byproduct of Lemma 1.

Lemma 2. For an input list L of rectangles and ε > 0, we have OPT (L) ≤
(1 + ε)OPTFSP (L) + O(ε−2), where OPT (L) is the optimal value for the list L.

Proof. For every list L, we have s(L) ≤ OPTFSP (L). So by Lemma 1, this
lemma follows.

The next lemma shows a useful property of homogenous lists.

Lemma 3. Given two lists L and L′, if L is r-homogenous to L′, we have
OPTFSP (L′) ≤ OPTFSP (L) ≤ r · OPTFSP (L′), where r ≥ 1.

Proof. If r = 1, it is easy to see that any fractional strip packing of L is a
fractional packing of L′ and vice versa. The conclusion thus follows immediately.

Now we consider the case that r > 1. By adding some rectangles to L′ we can
get a new list L′

1 which is 1-homogenous to L. We have

OPTFSP (L′) ≤ OPTFSP (L′
1) = OPTFSP (L).

On the other hand we obtain another list L′
2 by prolonging in height all rectangles

of L′, i.e., if (w, h) ∈ L′, then (w, rh) ∈ L′
2. Clearly

OPTFSP (L′
2) ≤ r · OPTFSP (L′).

Moreover, OPTFSP (L) ≤ OPTFSP (L′
2). The lemma holds.

Theorem 1. Given two lists L and L′, if L is r-homogenous to L′, then for any
ε > 0

OPT (L) ≤ r(1 + ε)OPT (L′) + O(ε−2).

Proof. By Lemma 2,

OPT (L) ≤ (1 + ε)OPTFSP (L) + O(ε−2).

By Lemma 3,
OPTFSP (L) ≤ r · OPTFSP (L′).

Moreover OPTFSP (L′) ≤ OPT (L′). Hence we have this theorem.

In the following we are ready to present our approach for offline strip packing.
Given an input list L = {R1, . . . , Rn} such that w1 ≥ w2 ≥ · · · ≥ wn, where
Ri = (wi, hi), and a constant c > 1, we construct an offline algorithm B&PA

using some bin packing algorithm A as a subroutine. Basically the strategy
consists of two stages.

Stage 1 - Batching. Pack R1, . . . , Ri by NF (Next Fit) algorithm in the vertical
direction into a slip S1 = (w1, c), where

∑i
j=1 hj ≤ c <

∑i+1
j=1 hj and pack

Ri+1, . . . , Rk into a slip S2 = (wi+1, c), and so on, until all items are packed,
shown as Figure 1. (Note that except for the last slip, all slips have the packed
heights at least (c − 1).)
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...

S S S1 2 k+1

Fig. 1. Packing rectangles into slips

Stage 2 - Packing. Except for the last slip, pack all slips into the strip by
algorithm A, since all slips have the same heights c. Then append the last slip
on the top of the strip.

We present the main result for the offline case. In terms of the asymptotic
worst case ratio, strip packing is essentially the same as bin packing.

Theorem 2. The asymptotic worst-case ratio R∞
B&PA

= R∞
A for any bin packing

algorithm A.

Proof. Assume that R∞
A = α. After the first stage of algorithm B&PA, we get

a series of slips S1, . . . , Sk, Sk+1, shown as Figure 1. We then round up every
item (wj , hj) in slip Si to (w(Si), hj) and obtain a new list L̄, where w(Si) is
the width of slip Si. On the other hand, we obtain another list L by rounding
down every item (wj , hj) in slip Si to (w(Si+1), hj) (here we set w(Sk+2) = 0).
We have

OPT (L) ≤ OPT (L) ≤ OPT (L̄) (1)

Let L1 and L2 be two sets of slips such that L1 = {S1, . . . , Sk} and L2 =
{S2, . . . , Sk}. Then

OPT (L2) ≤ OPT (L1) ≤ OPT (L2) + c. (2)

We can treat Si as a one-dimensional item ignoring its height since h(Si) = c for
i = 1, 2, . . . , k. Let I(L1) be the corresponding item set for bin packing induced
from the list L1, i.e, I(L1) = {w(S1), w(S2), . . . , w(Sk)}. And OPT (I(L1)) is
the minimum number of bins used to pack I(L1). It follows that OPT (L1) =
c · OPT (I(L1)).

Note that L2 is c/(c − 1)-homogenous to L, by Theorem 1, we have

OPT (L2) ≤ c

c − 1
(1 + ε)OPT (L) + O(ε−2). (3)

Now we turn to algorithm B&PA. After Stage 1 the list L becomes L1 ∪{Sk+1}.
At Stage 2 we deal with a bin packing problem: pack k + 1 items with size of
w(Si) into the minimum number of bins. The bin packing algorithm A is applied
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to I(L1) while Sk+1 occupies a bin itself. Thus B&PA(L) ≤ c · A(I(L1)) + c.
Since R∞

A = α, we have A(I(L1)) ≤ αOPT (I(L1)) + O(1). Then

B&PA(L) ≤ c · A(I(L1)) + c ≤ α · c · OPT (I(L1)) + O(c) = α · OPT (L1) + O(c).

Combining with (2),(3), (1), we have

B&PA(L) ≤ αOPT (L2) + O(c) (4)

≤ αc

(c − 1)
(1 + ε)OPT (L) + O(αε−2 + cα) (5)

≤ αc

(c − 1)
(1 + ε)OPT (L) + O(αε−2 + cα). (6)

As c goes to infinite and ε goes to zero, this theorem follows.

By Theorem 2, any offline bin packing algorithm can be transformed into an
offline strip packing algorithm without changing the asymptotic worst case ratio.
If the well known algorithm FFD ([1] [7][17]) is used in our approach, then we get
a simple and fast algorithm B&PFFD for strip packing and have the following
result from Theorem 2.

Corollary 1. Given constants ε > 0 and c > 1, for any strip packing instance
L, B&PFFD(L) ≤ 11c

9(c−1) (1+ ε)OPT (L)+O(ε−2 + c), where c ≤ εOPT (L), and
the time complexity is O(nlogn).

Remarks: If we batch all the rectangle by the approach in Stage 1 to generate a
set of slips, then apply the bin packing algorithm [8] to pack slips into the strip.
By the Theorem 2, this is an AFPTAS for the strip packing problem. Note that
the above algorithm is quiet simple and only relies on the algorighm used for
the bin packing problem.

3 The Online Problem

In this section we consider online strip packing. In the online case we are not
able to sort the rectangles in advance because of no information on future items.
Due to this point we cannot reach a complete matching between bin packing
algorithms and strip packing algorithms generated from the former. However we
can deal with a class H of Super Harmonic algorithms [13], which includes all
known online bin packing algorithms based on Harmonic. Such an algorithm can
be used in online strip packing without changing its asymptotic worst-case ratio.

A general algorithm of Super Harmonic algorithms has the following charac-
teristics.

– Items are classified into k + 1 groups by their sizes, where k is a constant
integer.

– Those items in the same group are packed by the same manner.
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3.1 An Online Algorithm G&PA

Let A be any algorithm of Super Harmonic algorithm. Our approach G&PA is
presented below.

Grouping: A rectangle is wide if its width is at least ε; otherwise it is narrow,
where ε > 0 is a given small number. We further classify wide rectangles into k
classes, where k is a constant, as Algorithm A does. Let 1 = t1 > t2 > · · · >
tk > tk+1 = ε. Denote Ij to be the interval (tj+1, tj ] for j = 1, ..., k. A rectangle
is of type-i if its width w ∈ Ii.

Packing narrow rectangles: Apply the standard shelf algorithm NFr [3] to
narrow rectangles R = (w, h), where 0 < r < 1 is a parameter. Round h to rs

if rs+1 < h ≤ rs. If R cannot be packed into the current open shelf with height
of rs, then close the current one and open a new one with height rs and pack R
into it, otherwise just pack R into the current one by NF.

Packing wide rectangles: We pack wide rectangles into bins of (1, c), where
c = o(OPT (L)) > 1 is a constant. Similarly as the offline case we batch the
items of the same type and pack them into a slip. Here we specify the width of
the slip by values ti for i < k + 1 and name a slip (ti, c) of type-i. Suppose that
the incoming rectangle R is of type i (w ∈ (ti+1, ti]). If there is a slip of type-i
with a packed height less than c− 1, then pack R into it by algorithm NF in the
vertical direction. Otherwise create a new empty slip of type-i with size (ti, c)
and place R into the new slip by NF algorithm in the vertical direction. As soon
as a slip is created, view it as one dimensional item and pack it by algorithm A
into a bin of (1, c). Figure 2(b) shows an illustration.

3.2 The Analysis for G&PA

The weighting function technique introduced by Ullman [14] has been widely
used in performance analysis of bin packing algorithms [5][10][13]. Roughly
speaking, the weight of an item indicates the maximum portion of a bin that

(a)

} shelf

}
shelf}

}

(b)slip

shelf bin
of (1,c)

Fig. 2. Shelf packing vs our packing
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the item occupies. Then, Seiden generalized the idea of weighting function and
proposed a weighting system which can be used to analyze Harmonic, Refined
Harmonic, Modified Harmonic, Modified Harmonic 2, Harmonic+1 and Har-
monic++. The basic ideas in his paper are below,

– First show that the total cost of his algorithm is upper bounded by the total
weights of all items.

– Then consider all the patterns of packing items into one bin and give an
upper bound of the total weight over all the patterns.

– Finally, the asymptotic competitive ratio is implied.

Here, we first introduce some definitions and results in the Super Harmonic
algorithm [13], then give a weighting function for our algorithm and prove that
our definition is a geralization of the one in [13].

Weighting Systems. Let R and N be the sets of real numbers and non-
negative integers, respectively. A weighting system for algorithm A is a tuple
(Rm,wA, ξA). R

m is a vector space over the real numbers with dimension m.
The function wA : (0, 1] �→ R

m is called the weighting function. The function
ξA : R

m �→ R is called the consolidation function. Seiden defined a 2K + 1
dimensional weighting system for Super Harmonic, where K is a parameter of
Super Harmonic algorithm. Real numbers αi, βi, γi, ε and functions φ(i), ϕ(i) are
defined in Super Harmonic algorithm. The unit basis vectors of the weighting
system are denoted by

b0,b1, ....,bK , r1, ...., rK .

The weighting function for an item with size x is defined as below:

wA(x) =

{
(1 − αi)

bφ(i)

βi
+ αi

rϕ(i)

γi
if x ∈ Ii with i ≤ k,

x b0
1−ε if x ∈ Ik+1.

The consolidation function is defined as below:

ξA(x) = x · b0 + max
1≤j≤K+1

min
{ K∑

i=j

x · ri +
K∑

i=1

x · bi,

K∑

i=1

x · ri +
j−1∑

i=1

x · bi

}
.

Lemma 4. [13] For all sequences of bin packing δ = (p1, ..., pn),

costA(δ) ≤ ξA

( n∑

i=1

wA(pi)
)

+ O(1).

This means that the cost of Super Harmonic Algorithm is bounded by the total
weight of the items. We can obtain a similar result in Lemma 5 by defining our
weighting function as follows,

wA(P ) = y · wA(x),

where P is a rectangle of size (x, y).
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Lemma 5. For any sequence of rectangles L = (P1, ..., Pn), the cost by G&PA is

costA(L) ≤ max{ c

c − 1
,
1
r
}ξA

( n∑

i=1

wA(Pi)
)

+ O(1).

Due to page limitation, the proof of Lemma 5 is left to the full paper. (Refer to
the page: www.lab2.kuis.kyoto-u.ac.jp/~hanxin/strip.ps)

For bin packing, a pattern is a tuple q = 〈q1, ..., qk〉 over N such that

k∑

i=1

qiti+1 < 1,

where qi is the number of items of type i contained in the bin. Intuitively, a
pattern describes the contents of a bin. The weight of pattern q is

wA(q) = wA

(
1 −

k∑

i=1

qiti+1

)
+

k∑

i=1

qiwA(ti).

Define Q to be the set of all patterns q. Note that Q is necessarily finite.
A distribution is a function χ : Q �→ R≥0 such that

∑

q∈Q
χ(q) = 1.

Given an instance of bin packing δ, Super Harmonic uses cost(δ)χ(q) bins con-
taining items as described by the pattern q.

Lemma 6. [13] For any distribution χ, if we set A as Harmonic++ then

ξA

( ∑

q∈Q
χ(q)wA(q)

)
≤ 1.58889.

By Lemmas 5 and 6, we have the folloing thorem. Its proof is left to the full
paper.

Theorem 3. If we set algorithm A to Harmonic++, then the asymptotic com-
petitive ratio of algorithm G&PA is 1.58889, where c is a constant..

4 Concluding Remarks

Although strip packing is a generalization of the one dimensional bin packing
problem, we show from the point of algorithmic view that it is essentially the
same as bin packing. In terms of asymptotic performance we give a universal
method to apply the algorithmic results for bin packing to strip packing main-
taining the solution quality. However our approach cannot be applied to strip
packing in terms of absolute performance. Note that algorithm FFD has an ab-
solute worst-case ratio of 3/2 which is the best possible unless P = NP . It is
challenging to prove or disprove the existence of a 3/2-approximation algorithm
for offline strip packing.
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Abstract. Let M be a class of 0/1-matrices. A 0/1/�-matrix A where
the �s induce a submatrix is a probe matrix of M if the �s in A can be
replaced by 0s and 1s such that A becomes a member of M. We show
that for M being the class of totally balanced matrices, it can be decided
in polynomial time whether A is a probe totally balanced matrix. On
our route toward proving this main result, we also prove that so-called
partitioned probe strongly chordal graphs and partitioned probe chordal
bipartite graphs can be recognized in polynomial time.

1 Introduction

With this paper, we bring together two lines of research. On the one hand,
we consider totally balanced matrices and the closely related strongly chordal
graphs, and, on the other hand, we study sandwich and, more specifically, probe
problems. We provide first positive results on the recognizability of probe totally
balanced matrices and, correspondingly, partitioned probe chordal bipartite and
partitioned probe strongly chordal graphs.

Sandwich Problems. Sandwich problems are studied in graph and hypergraph
theory as well as for matrix problems [10,13,14,16]. For a graph property Π, the
corresponding sandwich problem is defined as follows: Let G1 = (V, E1) and
G2 = (V, E2) be two graphs such that E1 ⊆ E2. Is there a graph G = (V, E) such
that G satisfies Π and E1 ⊆ E ⊆ E2? Similarly, in case of matrices one is given
a matrix with entries from {0, 1, �}, and one asks whether one can replace the �s
by 0s and 1s such that the matrix fulfills a given property (such as being totally
balanced).

Sandwich problems can be seen as generalizations of recognition and com-
pletion problems; for instance, graph completion problems allow the arbitrary
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addition of edges whereas in sandwich problems the addition of certain edges
(those not in E2) is disallowed. Unfortunately, as a rule, sandwich problems
are notoriously hard. For instance, in their classic paper, Golumbic, Kaplan,
and Shamir [14, Figure 3] have pointed out the NP-completeness of sandwich
problems for many subclasses of perfect graphs. Very recently, Faria et al. [12]
announced the NP-completeness of the sandwich problem for strongly chordal
graphs. Analogous results hold for matrix sandwich problems [13,16]. For in-
stance, considering the class of matrices with the consecutive ones property (see
for example [4]), the corresponding sandwich problem is NP-complete [16].1

With the probe concept, motivated by applications in computational biology,
a new, seemingly more tractable2 sandwich concept entered the stage. It already
received considerable attention in the graph-algorithms community; for example,
see [3,5,15]. Given a class of graphs G, a graph G is a probe graph of G if its vertices
can be partitioned into two sets P (the probes) and N (the nonprobes), where N

is an independent set, such that G can be embedded into a graph of G by adding
edges between certain nonprobe vertices. Notice that this is a special version of
graph sandwich problems with G1 = G and G2 = (V, E ∪ E ′) where E ′ contains
the edges between all vertex pairs from N.

0/1-Matrix Problems. Interpreting 0/1-matrices as adjacency matrices, there
is a direct connection between matrix and graph problems. In what follows, we
will make extensive use of this close relationship, setting out our proofs in terms
of graph theory rather than matrix theory. The original motivation for our work,
however, comes from matrices and integer linear programming.

It is well-known that when the matrix of a linear program is balanced, totally
balanced, or totally unimodular, then the corresponding integer linear program-
ming problem can be solved in polynomial time. The general case is NP-hard
(see, e.g., [4,21]). The study of balanced 0/1-matrices, that is, matrices where no
square submatrix of odd order contains exactly two 1s per row and per column,
goes back to Berge [2]. In particular, he proved that a 0/1-matrix is balanced if
and only if the corresponding bipartite graph has no induced cycle of length 2

mod 4. Later, Lovász suggested to study totally balanced 0/1-matrices, that
is, matrices that correspond to bipartite graphs without any induced cycle of
length more than 4. In this paper, we want to initiate a study of probe problems
referring to these matrices. More precisely, we focus on the perhaps simplest
case, that is, totally balanced matrices. This matrix class, a subclass of balanced
matrices, finds applications in various contexts [1,4]. We employ the following,
for our purposes most suitable definition of totally balanced matrices (due to
Lovász). To this end, note that a 0/1-matrix uniquely corresponds to a bipartite
graph where one color class stands for the rows and the other for the columns.

A 0/1-matrix is totally balanced if its corresponding bipartite graph is chordal
bipartite, that is, if the bipartite graph has no chordless cycle of length more than

1 The matrices with the consecutive ones property form a subclass of totally balanced
matrices.

2 For instance, whereas the sandwich problem for chordal graphs is NP-complete [14],
the corresponding probe chordal problem is polynomial-time solvable [15,3].
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four. Note that the recognition of chordal bipartite graphs has a long history,
see Huang [18] for recent characterizations. The sandwich problem for totally
balanced matrices is, given a matrix A with entries from {0, 1, �}, try to replace
the �s with 0s and 1s such that A becomes totally balanced. Unfortunately,
this problem turns out to be NP-complete [12]. Hence, instead we somewhat
naturally “relax” the problem formulation, considering its probe version. Let A

be a 0/1/�-matrix in which the �s induce a submatrix . Then A is called probe
totally balanced if the �s in A can be replaced by 0s and 1s such that A becomes
totally balanced.

Seen from a more general perspective, probe matrices stand in one-to-one
correspondence with partitioned probe bipartite graphs; partitioned means that
the partition of the vertices into probes and nonprobes is part of the input.
More precisely, exactly those rows and columns that contain at least one �-entry
correspond to the nonprobe vertices.

The main result of this work in terms of matrices is to show that one can decide
in polynomial time whether a given 0/1/�-matrix is probe totally balanced, and,
if so, find a corresponding replacement of the �s by 0s and 1s. This can also be
considered as a step toward solving the corresponding recognition problems for
probe balanced and probe totally unimodular matrices.

Due to the lack of space, some proofs are omitted.

2 Preliminaries

For notational convenience, for sets A and B and elements x we write A + B,
A − B, A + x, and A − x as shorthands for A ∪ B, A \ B, A ∪ {x}, and A \ {x}.
Moreover, for a graph G = (V, E) we denote by G − x the induced subgraph
G[V − x]. The complement graph Ḡ = (V, E ′) of a graph G = (V, E) is given
by E ′ := {{u, v} | u, v ∈ V, {u, v} /∈ E}. For a vertex x we denote by NG(x) the
set of its neighbors in graph G and we let NG[x] = NG(x) + x be its closed
neighborhood. For a subset A ⊆ V we write NG(A) =

⋃
x∈A NG(x)−A. Herein,

we omit the subscript “G” when it is clear from the context. A subset I of vertices
is called an independent set if the induced subgraph G[I] has no edge, whereas
a subset K of vertices is called a clique if G[K] has all possible edges.

A chord in a (simple) cycle is an edge connecting two vertices of the cycle
which are not adjacent in the cycle. A graph is chordal if it has no chordless cycle
of length more than 3. A chord in an even cycle is odd if the distance between
the endvertices along the cycle is odd.

The major technical contribution of this paper is based on the close relation-
ship between the class of strongly chordal graphs and totally balanced matrices.
The following is not the original definition of strong chordality but a character-
ization due to Farber [11] which best fits our purposes.

Definition 1 ([11]). A graph is strongly chordal if it is chordal and every even
cycle of length at least six has an odd chord.

Polynomial-time recognition algorithms for strongly chordal graphs (based on
doubly-lexical orderings) are due to Lubiw [19] and Paige and Tarjan [20].
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(a)

(b)

Fig. 1. A 3-sun (a) and a trampoline (b)

Strongly chordal graphs have a useful characterization based on the following
notion.

Definition 2. A simple vertex is a vertex x such that for every pair y, z ∈ N(x)
either N[y] ⊆ N[z] or N[z] ⊆ N[y].

That is, the closed neighborhoods of the neighbors of a simple vertex form a chain
under inclusion. Notice that a simple vertex is simplicial , i.e., its neighborhood
induces a clique.

Theorem 1 ([11]). A graph is strongly chordal if and only if every induced
subgraph has a simple vertex.

The class of strongly chordal graphs can be characterized by forbidden induced
subgraphs called suns. A sun is a graph obtained from an even cycle of length at
least 6 by adding edges to make a maximum independent set into a clique. If the
cycle is of length 2k, then the sun is called a k-sun. We call the set of vertices
of degree 2 in a sun the independent set of the sun, and the set of vertices of
degree at least 4, the clique of the sun. If some edges of the clique are missing
but the graph is still chordal, it is called a trampoline. Figure 1 shows a 3-sun
and a trampoline.

Theorem 2 ([6,11]). A graph is strongly chordal if and only if it is chordal
and has no induced sun.

3 Partitioned Probe Strongly Chordal Graphs

Strongly chordal graphs are closely related to totally balanced matrices. As a ba-
sis for showing in Sect. 4 that probe totally balanced matrices can be recognized
in polynomial time, here we show how to recognize partitioned probe strongly
chordal graphs, or PP-strongly chordal graphs for short, in polynomial time.

In what follows, an embedding of a probe graph G into a graph class G always
means a graph contained in G which is obtained from G by adding edges between
the nonprobes in G. In our recognition algorithm the first two steps concentrate
on finding an embedding of the partitioned probe graph into a chordal graph. In
a third step we take care of the suns (cf. Theorem 2) in this chordal embedding.

To find a chordal embedding, we first prove that we only have to destroy
chordless 4-cycles. More precisely, we show that probe strongly chordal graphs
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are weakly chordal. That is, they contain neither an induced hole nor an induced
antihole. A hole is a chordless cycle of length at least 5. An antihole is the
complement of such a cycle.

Lemma 1. Probe strongly chordal graphs are weakly chordal.

Proof. Since probe strongly chordal graphs are probe chordal, they are per-
fect [15] and hence they have no induced odd hole [7]. A probe chordal graph
also contains no antihole. Suppose there is an antihole. It has at most two non-
probes, and the edge joining them must be added because an antihole is not
chordal.3 However, the resulting graph still contains at least the complement of
a path induced by five vertices, and hence a 4-cycle, and is still not chordal.
Thus, it remains to be shown that there are no even holes.

Consider a graph G containing an induced even hole of length 2k, k ≥ 3. To
make G chordal, one needs a set of k nonprobes. The even hole can be made
into a sun by turning this set of nonprobes into a clique. However, if not all the
edges between nonprobes are there, this even hole will be a trampoline. Since
every trampoline contains a sun as an induced subgraph [6,11], any embedding
of this even hole will have a sun. Thus, G is not probe strongly chordal. ��

Next we point out how to cope with chordless 4-cycles (the second step of our
algorithm). To this end, we need some more notation and facts. A cycle in which
probes and nonprobes alternate is called an alternating cycle.

Proposition 1 ([15]). Let G = (P + N, E) be a partitioned graph. Let C be
a chordless 4-cycle in G. If G is probe chordal, then C is alternating and any
chordal embedding of G must have the edge filled in between the two nonprobes
of C.

Enhanced graphs [15] play a central role for the recognition of probe chordal
graphs [3,15] and are also a key concept in our recognition algorithm.

Definition 3 ([15]). The enhanced graph G∗ is obtained from a partitioned
graph G = (P+N, E) by adding all edges between nonprobes in alternating chord-
less 4-cycles of G.

As stated in the following theorem [15], the enhanced graph is the desired chordal
embedding for the second step of the algorithm.

Theorem 3 ([15]). Let G = (P + N, E) be a PP-chordal graph which is weakly
chordal. Then the enhanced graph G∗ is chordal.

For the third and last step of our algorithm, by Theorem 2, it remains to destroy
the induced suns in the enhanced graphs. As an example of destroying suns,
take the 3-sun in which one independent set vertex and one clique vertex are

3 An antihole is not chordal for the following reason. A length-5 antihole is the same
as a length-5 hole. Every antihole with at least 6 vertices contains 4 vertices which
induce a chordless cycle.
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Nonprobes

Probes

Fig. 2. A 3-sun in which one independent set vertex and one clique vertex are the only
(nonadjacent) nonprobes. Adding the edge destroys the sun.

the only (nonadjacent) nonprobes (see Fig. 2). The enhanced graph is the 3-sun
itself, which is not strongly chordal. A strongly chordal embedding is obtained
by adding the edge between the two nonprobes. The final and most important
concept for our strategy to destroy suns is the notion of a “probe simple vertex.”

Definition 4. Let G = (P + N, E) be a partitioned graph. A vertex is probe
simple if it can be made simple by adding some edges between nonprobes in G.

Obviously, if G is PP-strongly chordal then, by Theorem 1, every induced sub-
graph has a probe simple vertex.

We summarize our findings in the following pseudo-code for recognizing PP-
strongly chordal graphs. The correctness of the third and main step is heavily
based on Theorem 4 shown subsequently.

Algorithm for recognizing PP-strongly chordal graphs
Input: Partitioned probe graph G = (P + N, E).
Output: Yes if G is PP-strongly chordal; otherwise, no.

1 If G is not weakly chordal then return no;
2 If there is a chordless 4-cycle that is not alternating then return no;
3 Construct the enhanced graph G∗;

While G∗ is not empty do
If G∗ has a probe simple vertex s then

Insert an inclusion-minimal set of edges into G∗ to make s simple;
G∗ := G∗ − s

else return no;
Return yes

In the following, given a graph G = (V, E), a vertex v ∈ V , and a graph H =
(VH, EH) with VH ⊆ V \ {v}, we use H + v to denote the graph obtained by
adding v to H and adding the edges between v and NG(v) ∩ VH.

Theorem 4. Let s be a probe simple vertex in an enhanced graph G. Let G′ be
the graph obtained from G by adding an inclusion-minimal set of edges between
nonprobes to G in order to make s simple. Then, G is PP-strongly chordal if and
only if G′ − s is PP-strongly chordal.

Proof. (Sketch) “⇐”: We show this direction by constructing from a strongly
chordal embedding H of G′ − s a strongly chordal embedding of G. Since s is
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simple in G ′, H + s is chordal. If H + s is strongly chordal, then we are done.
Hence, we consider the case that H + s contains a sun: We transform H into a
new, strongly chordal embedding Ĥ of G − s such that s is simple in Ĥ + s; that
is, for every two vertices x, y ∈ NG(s) either NĤ[x] ⊆ NĤ[y] or NĤ[y] ⊆ NĤ[x].
Then Ĥ + s is a strongly chordal embedding of G.

To construct Ĥ, we apply the following operation to all pairs x, y ∈ NG(s)
with NG′ [x] ⊆ NG′ [y] while NH[x] − NH[y] 	= ∅. Obviously, NH[x] − NH[y] ⊆
N. Consider removing all edges {x, z} where z ∈ NH(x) − NH[y]. Assume this
creates a chordless cycle C of length at least 4. Since H is chordal, x ∈ C.
Then y is adjacent to the two neighbors of x in C and C contains a vertex z in
NH(x) − NH[y] which is not adjacent to y. It follows that the subgraph of H

induced by C − x + y contains a chordless cycle, which is a contradiction.
A similar argument shows that the resulting graph is strongly chordal. Re-

peated application of the above operation gives the graph Ĥ.
“⇒”: The basic idea of the proof of this direction is as follows. To show

that G′ − s is PP-strongly chordal, we construct a strongly chordal embedding
of G ′−s from the strongly chordal embedding H of G. More precisely, by adding
and deleting edges, we will construct a graph Ĥ from H such that Ĥ − s is a
strongly chordal embedding of G ′ − s. The central difficulty arising here is as
follows. In order to make s simple in G ′, we have added edges to G to obtain G ′.
Among these edges there might be edges that are not present in H. Just adding
these edges to H, however, does not necessarily guarantee that the resulting
graph is strongly chordal. Thus, we will not only add these edges to H, but also
delete and add some other edges when constructing Ĥ from H.

Without loss of generality let us assume the ordering NG′ [s] ⊆ NG′ [x1] ⊆
· · · ⊆ NG′ [xk] for NG ′(s) = {x1, . . . , xk}. We write also s = x0. The graph Ĥ shall
have the following properties: Ĥ is strongly chordal (P1), NĤ(s) = NG ′(s) =
{x1, . . . , xk} (P2), and NĤ[s] ⊆ NĤ[x1] ⊆ · · · ⊆ NĤ[xk] (P3).

Step 1. Apply the following operation for i = 0, . . . , k: As long as xi has a
neighbor z in H for which there exists a probe vertex y ∈ {xi+1, . . . , xk}∩P with
z 	∈ NH(y), remove the edge {xi, z} from H.

It can be shown that the resulting graph H1 is strongly chordal.

Step 2 . Turn NH1
[s] into a clique.

Let H2 be the result. Assume H2 has a chordless cycle C. Then C has exactly
two vertices x, y ∈ NH1

(s). Then C + s induces a chordless cycle in H1 and
this is a contradiction. Now let D be a component of H1 − NH1

[s]. Then any
two vertices x, y ∈ NH1

(D) are adjacent and have no private neighbors in D.
Herein, for two vertices x and y, a private neighbor of x is a vertex adjacent
to x but not to y. It follows that a vertex in D which is simple in H1 remains
simple in H2. Thus H2 has a simple elimination ordering, i.e., there is a vertex
ordering (v1, . . . , vn) of H2 such that, for all 1 ≤ i ≤ n, the vertex vi is simple
in the subgraph of H2 induced by {vi, . . . , vn}. Thus, H2 is strongly chordal.
Step 3 . For i = 0, . . . , k − 1 and each y ∈ {xi+1, . . . , xk}, make y adjacent to all
vertices of NH2

[xi].
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Let H3 be the resulting graph. Assume that making y adjacent to all vertices
of NH2

[xi] creates a chordless cycle C. Then for some z ∈ NH2
(xi), y, z ∈ C.

Now let z′ be the other neighbor of y in C. Then NH2
(xi) ∩ C ⊆ {y, z, z′}. It

follows that H2[C + xi] also contains a chordless cycle. Assume this step creates
a “bad” cycle S, i.e., an even cycle of length at least 6 without an odd chord.
Let y, z, z′ ∈ S as above and let z′′ be the other neighbor of z in S. Then xi is
adjacent to at least one of z′, z′′ and it follows that also H2 has such a bad cycle,
a contradiction.
Step 4. Remove the edges {s, z} from H3 for all z ∈ NH3

(s) − NG ′(s).
In the remaining graph Ĥ, s has the same neighborhood as in G ′. Notice

that Ĥ is strongly chordal: Indeed, H3 − s = Ĥ − s, and so Ĥ − s is strongly
chordal. The vertex s is simple in Ĥ, thus also Ĥ is strongly chordal. ��

The correctness of the algorithm as given in the pseudo-code above follows from
Lemma 1, Proposition 1, Theorem 3, and Theorem 4. Altogether, we obtain the
following main result.

Theorem 5. It can be decided in polynomial time if a partitioned graph G is
PP-strongly chordal. If so, also an embedding of G can be found.

4 Partitioned Probe Chordal Bipartite Graphs

Recall that our main goal is to devise a polynomial-time algorithm for the recog-
nition of probe totally balanced matrices. To this end, we make use of the fact
that a 0/1-matrix is totally balanced if and only if the corresponding bipartite
graph is chordal bipartite [11].

In this section, we show that the recognition algorithm for PP-strongly chordal
graphs can be used for recognizing PP-chordal bipartite graphs and indicate how
this transfers to the recognition of probe totally balanced matrices.

One characterization of chordal bipartite graphs that is useful for our purposes
is the following by Dahlhaus [9]. If B = (X, Y, E) is a bipartite graph then we
denote by splitX(B) the graph obtained from B by completing X into a clique.4

Theorem 6 ([9]). A bipartite graph B = (X, Y, E) is chordal bipartite if and
only if splitX(B) is strongly chordal.

From now on, let B be a partitioned probe bipartite graph. Without loss of
generality, we assume that B is connected, since otherwise we may concentrate on
the components individually. Obviously, we cannot simply apply the recognition
algorithm for partitioned probe strongly chordal graphs to splitX(B), since the
completion of X into a clique possibly adds edges between nonprobe vertices.
Instead, we use the following trick: We add two probe vertices to Y, say α and ω,
and make these adjacent to all vertices of X. Let αω(B) be the resulting bipartite
graph. Next, for every probe vertex x in X, we add edges between x and all other
4 The operation splitX(B) transforms B into a splitgraph, that is, a graph which has a

partition of its vertex set into a clique and an independent set.
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vertices in X. Since α and ω create a chordless 4-cycle with any pair of nonprobe
vertices of X, any embedding of this new graph into a strongly chordal graph
forces X into a clique. Let PPsplitX(αω(B)) be the graph obtained from αω(B)
by adding edges between vertices in X as described above. In the following,
we present a “probe version” of Theorem 6. Afterwards, Theorem 8 justifies the
application of the partitioned probe strongly chordal graph recognition algorithm
from Section 3 to PPsplitX(αω(B)).

Theorem 7. A partitioned probe bipartite graph B = (X, Y, E) is partitioned
probe chordal bipartite if and only if PPsplitX(αω(B)) = (X, Y ∪ {α, ω}, E ′) is
partitioned probe strongly chordal.

Combining Theorems 5 and 7, we arrive at the main result of this section.

Theorem 8. Partitioned probe chordal bipartite graphs can be recognized in
polynomial time.

Proof. The algorithm works as follows: Given a partitioned probe bipartite
graph B = (X, Y, E), construct PPsplitX(αω(B)) = (X, Y ∪ {α, ω}, E ′) as described
above. The new graph is checked against being partitioned probe strongly chordal
by the algorithm in Section 3. The correctness and the running time follow from
Theorems 5 and 7. ��

Corollary 1. Probe totally balanced matrices can be recognized in polynomial
time.

5 Future Work

With this paper we try to initiate research on special matrix sandwich problems,
that is, probe matrix problems. These stand in close relationship with partitioned
probe graph problems. As an important starting case, we settled the complex-
ity of the recognition problem of the probe totally balanced matrices, thereby
also showing the polynomial-time recognizability of partitioned probe strongly
chordal graphs and of partitioned probe chordal bipartite graphs. Note that the
corresponding sandwich versions are NP-complete [12]. As to future work, we
face the following two challenges (refer to [4, Chapter 9] for definitions).
1. Show that probe balanced matrices can be recognized in polynomial time. In
their seminal work, Conforti, Cornuéjols, and Rao [8] designed a polynomial-time
algorithm for recognizing balanced matrices (also see [17,23]).
2. Show that probe totally unimodular matrices can be recognized in polynomial
time. Here, Seymour’s [22] famous decomposition result for totally unimodular
matrices should be helpful (also see [21, Chapters 19–21]).

Further opportunities for future work include showing the polynomial-time
recognizability of unpartitioned strongly chordal graphs and studying optimiza-
tion versions of the probe problems considered. In the latter case, the natural
task would be to minimize the number of edges added and the number of �s
turned into 1s, respectively.



Probe Matrix Problems: Totally Balanced Matrices 377

References

1. V. L. Beresnev. An efficient algorithm for the uncapacitated facility location prob-
lem with totally balanced matrix. Discrete Applied Mathematics, 114:13–22, 2001.

2. C. Berge. Balanced matrices. Mathematical Programming, 2:19–31, 1972.
3. A. Berry, M. C. Golumbic, and M. Lipshteyn. Two tricks to triangulate chordal

probe graphs in polynomial time. In Proc. of 15th ACM–SIAM SODA, pages
962–969. ACM–SIAM, 2004.
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Abstract. BitTorrent (BT) in practice is a very efficient method to
share data over a network of clients. In this paper we extend the recent
work of Arthur and Panigrahy [1] on modelling the distribution of indi-
vidual data blocks in BT systems, aiming at a better understanding of
why BT can achieve a high degree of parallelism. In particular, we include
in our study several new network features that BT systems are using, as
well as different local heuristics for routing data blocks in each client. We
conduct simulations to figure out to what extent the new network fea-
tures and routing heuristics would affect the distribution efficiency. Our
findings confirm that for the primitive network setting studied in [1], it
does require Ω(b log n) phases for n clients to download b data blocks.
More interestingly, our work suggests that for the more realistic net-
work setting, the heuristics Random and Rarest Block First both allow
n clients to download b blocks in b+O(log n) phases. We believe that the
latter bound better reflects the high degree of parallelism of BT observed
in reality. It is also worth-mentioning that b + log n is the smallest pos-
sible number of phases needed; it is interesting to see that some simple
local routing heuristics have a performance so close to the optimal.

1 Introduction

Let us consider the following problem. There are n clients (nodes) on a well-
connected network. They want to download a file of b data blocks from a server
in a cooperative and efficient, but distributed manner. The idea is to avoid each
client directly downloading from the server. Instead the server uploads each
data block to only one client, and let the clients distribute the block among
themselves. Assume each client can upload one data block to only one neighbor
in one phase. The key concern is whether there exists a good strategy for each
client to determine in each phase which block and which neighbor to upload, so
that most clients can have progress in each phase.

� Part of this research was done while the author was at University of Hong Kong.
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The above problem is based on the “flash crowd” scenario, where a large
number of clients join the network almost simultaneously to download a data
file (say, a soccer game). BitTorrent (BT) [3,7] has found to be a very efficient
method for such a problem in practice; it does exploit the bandwidth among the
clients, and it is often observed that using BT, most clients have swift progress
in parallel. Arthur and Panigrahy [1] were the first to model the distribution of
data blocks in BT systems mathematically, aiming at explaining the high degree
of parallelism BT achieves. In particular, they consider the clients are connected
via a directed BT-graph (definition given in Section 2), and in each phase each
client can upload (send) as well as download (receive) one data block from its
neighbors. Among others, they proved that using a random strategy, the n clients
can download all b blocks in O(b log n) phases with high probability. Below we
refer this number of phases as the total distribution time.

In this paper, we extend the model used in [1] to include other network fea-
tures found in BT networks. First, traffic between two neighbors is usually bidi-
rectional; i.e., a client can upload and download from each neighbor client. Next,
we note that the size of a data block is chosen in such a way that in each phase,
a client has sufficient bandwidth to upload a block to one of its neighbors, yet
the download rate is usually a few times higher than the upload rate (this is
imposed by some internet providers), and each client can receive several data
blocks in each phase. Furthermore, each client should be able to make a better
decision using a request-based protocol instead of a push-based protocol; the
former protocol requires each client to listen to the requests from its neighbors
before making a decision which block and which neighbor to upload. The first
objective of this paper is to study to what extent these extended features of the
model would affect the total distribution time.

Furthermore, we study three different local routing heuristics for each node to
decide which block to upload to its neighbor in each phase, namely, Sequential,
Random, and Rarest Block First. Sequential simply uploads blocks sequentially
according to their order in the file. Random picks a random block to upload.
Rarest Block First selects a block which is the rarest among the neighbors of a
node; this is a strategy being used by BT [5,7]. Regardless of which heuristic a
node uses, the node only uploads a block which the neighbor does not have.

Note that no matter which network setting and which heuristics we pick, the
total distribution time is at least b+�log n�. To see this lower bound, we observe
that the server requires b phases to upload b blocks, and the last block can reach
at most 2i − 1 clients after i phases. It is a challenging task to find a reasonable
network setting and routing heuristic that can lead to a total distribution time
close to b + log n.

We have done a lot of simulation on different network settings and heuristics.
We consider models with different combinations of the three network features
mentioned above to see to what extent they affect the total distribution time.
These features include directed vs undirected graph, single vs multiple receive,
and push vs request protocol. For multiple receive, we further distinguish the
cases where a limited number x (called receive-x) of blocks vs an unlimited
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number can be received by a node in each phase. For each combination, we
study the three local routing heuristics. We also vary the number of nodes n and
the number of blocks b. Our findings are summarized as follows.

– As expected, the undirected and request-based model admits a better data
distribution.

– For the model used in [1] (i.e., directed receive-one push), we observe that
the total distribution time does require Ω(b log n).

– The most surprising result is related to the model using undirected BT-
graph, multiple receives, and request-based protocol (i.e., undirected receive-
x request). No matter random or rarest block first is used, our simulation
shows that the total distribution time is in the order b+O(log n), very close
to the lower bound. For example, when b = 3000 and n = 2000, the total
distribution time is around 3050 on average (with a very small standard
deviation of 5 over five different trails.)

– It is natural to expect that the total distribution time to decrease with
maximum number of receives in each phase increases. The decrease is indeed
very drastic when we vary the number from 1 to 2, but the effect is not visible
once the number goes up to 3. In fact, we find no significant difference using
a maximum of five receives and an unlimited number of receives.

– Rarest block first is a heuristic used by BT. It is most effective, but only a
bit better than Random. On the other hand, using Random saves a lot of
implementation overhead. We believe Random is a better choice.

Related work. Before the work of Arthur and Panigrahy [1], there have been
some theoretical work, yet some assumptions were made which might not be
true in practice. Qiu and Srikant [10] applied flow analysis to BT-like networks
but assuming (1) the data blocks available in each client for download at each
phase is random and independent; (2) constant arrival rates. The latter does
not account for BT’s strength in handling flash crowd scenario. Yang and de
Vecianna [11] considered flash crowd scenario but assumed that distribution
of one data block will not slow down the distribution of other data blocks,
ignoring the possible interaction in the distribution. There is also empirical work
attempting to demonstrate BT’s routing policy work well in practice [8,9,2,6],
but they do not consider the distribution of individual data block.

Organization of the paper. In Section 2, we review Arthur and Panigrahy’s
model and discuss the effects of various network features on data distribution
time. In Section 3, the local routing heuristics are tested. Finally, we give some
concluding remarks in Section 4.

2 Network Models and Distribution Time

In this section, we first review Arthur and Panigrahy’s model and then discuss
how different model features affect the total distribution time. These features
include directed vs undirected graph, single vs multiple receive, and push vs
request protocol. In the next section we will study the effect of different routing
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heuristics. The experiments in this section all assume the Random heuristic when
a node decide which block to send/receive.

2.1 Arthur and Panigrahy’s Model

Arthur and Panigrahy [1] model a BT-like network as a directed graph with n
nodes, each representing a user. One of the nodes is the seed which holds a large
file initially. The file is divided into b equal-size blocks. The remaining n − 1
nodes want to obtain the file and they have zero block of the file initially.

A BT system maintains a virtual network represented as a BT-C graph1, for
some integer C, which is constructed as follows. The BT-C graph starts with
C nodes v1, v2, . . . , vC , with a directed edge from vi to vj if and only if i < j.
While the total number of nodes is less than n, a new node is added. C existing
nodes are selected at random from which directed edges are drawn to the new
node. In most BT systems, C is set to 40 .

For the distribution of data blocks in the network, a node can send a block
to a neighbor only if it already has the block, and a node obtains the whole file
only if it has every block of the file. Time is divided into discrete time steps
(phases). In each phase, each node can send at most one block to a neighbor
along an outgoing edge. When multiple blocks are sent to a node in a phase, the
node can receive at most one such block.

The efficiency of the system is measured by the total distribution time, which is
the number of phases taken until all nodes obtain the file. Arthur and Panigrahy
assume a simple protocol for sending blocks: In each phase, each node u randomly
picks a neighbor v, and u sends to v a block that u already has but v does not.
u is idle if no such block exists. They proved that the total distribution time is
O(b log n) with high probability.

2.2 Identifying More Realistic Model Features

We observe that some features in Arthur and Panigrahy’s model are too restric-
tive comparing to a real BT system. In particular, we focus on the following three
important features and analyze how they affect the total distribution time.

1. Directed vs Undirected graph. When modelling the network as a di-
rected graph, the connection is asymmetric, i.e., there are pairs of nodes,
say u and v, connected by an edge for which u can send to v but not vice
versa This is not the case in real-life BT systems (more precisely, the under-
lying Internet) in which connected nodes can send blocks in both directions.
In our study, we analyze the effect of assuming directed vs undirected (bidi-
rectional) edges.

2. Single vs multiple receive. This models the bandwidth limit of the nodes.
When multiple blocks are sent to a node in a phase, Arthur and Panigrahy
assume that the node randomly obtains one of the blocks. It corresponds to

1 The network in which the users connect is actually the Internet. On the application
layer, BT maintains a virtue network in the form of a BT-C graph.
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Table 1. The most restrictive model DG-1-Ph (col. 1) performs the worst. The most
relaxed models UG-5-Rq & UG-u-Rq (bolded) are the best. Request protocol improves
distribution time (col. 3 vs 4; 5 vs 6). Multiple receive also outperforms single (col. 2
vs 4 & 6).

Distribution time DG-1-Ph UG-1-Rq UG-5-Ph UG-5-Rq UG-u-Ph UG-u-Rq
n = 300, b = 1200 3826 1913 1354 1228 1325 1228
n = 2000, b = 1200 5068 1935 1386 1247 1344 1239
n = 300, b = 3000 9915 4742 3300 3034 3212 3030
n = 2000, b = 3000 12866 4787 3368 3047 3243 3044

the situation that download bandwidth is limited to a similar extent as the
upload bandwidth. In reality, the download bandwidth of a node is usually
higher than the upload capacity. Thus, it is interesting to understand the
effect when each node can receive r ≥ 2 blocks in each phase. We will consider
the cases of r = 1 vs r = 5 and r is unlimited.

3. Push vs request protocol. This refers to whether a node actively ask
for a missing block that it does not have. When a node send blocks to the
neighbors, it was assumed in [1] that the node randomly picks a neighbor and
sends a block useful to that neighbor without prior communication. We call
this a push protocol. In reality, a BT system uses a two-way protocol where
at the beginning of each phase, each node sends requests to the neighbors
asking for missing blocks, and then each node serves some of the requests
it gets. We call this a request protocol. Intuitively, request protocol helps to
avoid multiple neighbors sending the same block to a node.

2.3 Simulation and Findings

We consider models with different combinations of the above three features and
see how they affect the total distribution time. We name the models using three
fields: the first field is either DG (directed graph) or UG (undirected graph);
the second field tells the maximum number of blocks a node can receive in
one phase, with u means unlimited; the third field is Ph (push protocol) or Rq
(request protocol). For example, DG-1-Ph refers to the model studied in [1]. On
the other hand, UG-u-Rq is the most relaxed model, based on which we vary
the features to also study models in between (see Table 1 for the list of models
we study).

When the request protocol is used, we assume that a random routing heuristic
is used, i.e., each node picks a random missing block in turn (until all missing
blocks have been considered) and requests it from a random neighbor having it,
with the restriction that no neighbor will be requested twice. Note that we will
discuss other routing heuristics in Section 3. We also assume that after getting
the requests, each node randomly serves one of the requests.

We perform simulations with n = 300, 2000 and b = 1200, 3000. Note that
BT systems usually divide a file into pieces of 1/4 MB each, b = 1200 and 3000
correspond to a file of 300MB and 700MB, respectively, the latter is about the
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Fig. 1. The distribution time increases linearly with b (see the four different curves).
The effect of n on the distribution time is small (see the flatness of each curve).

size of a CD. The choices of n allow us to see the effect of n being smaller than
and larger than b. For each model and combination of n and b, we repeat the
simulation for 5 times and record the average distribution time. The results are
shown in Table 1. We have the following observations.

Near optimal distribution time. We observe that the total distribution time
of models UG-5-Rq (col. 4) and UG-u-Rq (col. 6) are close to the theoretical
lower bound of b + O(log n). It shows that the features of undirected graph,
multiple receive and request protocols are very effective in improving the total
distribution time. Note that a random heuristic is used in selecting blocks to
send and receive. The experiments show that this is sufficient to obtain a good
performance under an appropriate model.

To understand further the growth in distribution time under different com-
binations of n and b, we perform more experiments under the UG-5-Rq model,
with n = 300, 1000, 1500, 2000 and b = 1200, 1800, 2400, 3000. We plot the total
distribution time against n, with each value of b in a different curve. The results
are shown in Figure 1. We can observe that the total distribution time grows
very slowly as n increases. The distribution time is close to b + k log n where k
is approximately 4.

Multiple receive is most effective. We observe that among the three features
considered, allowing multiple receive per phase seems to be the most effective
in improving the total distribution time. For example, comparing the models of
UG-1-Rq (col. 2) and UG-5-Rq (col. 4), the total distribution time decreases by
about 35%.

The effect of multiple receive can be explained as follows. Because each node
decides on its own to whom it sends a block, it is common for multiple nodes
sending blocks to the same target node. When each node can only receive one
block per phase, bandwidth is lost, i.e., overall the number of data blocks received
is smaller than that sent because some blocks have to be dropped. We call this
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Fig. 2. The total distribution time drops significantly when the number of allowed
receive increases from 1 to 2 and becomes stable beyond 3. Note that the two curves
for b = 1200 (similarly, for b = 3000) are very close because the distribution time is
dominated by the value of b.

receive collision. Multiple receive effectively reduces the bandwidth lost due to
receive collision, thus leading to improved distribution time.

To obtain a better understanding of the effect of multiple receive, we vary the
number of allowed receive from 1 to 5 and also unlimited. We perform experi-
ments for n = 300, 2000 and b = 1200, 3000. The results are shown in Figure 2.
We observe that the total distribution time improves greatly when number of
allowed receive increases from 1 to 2, and has little effect beyond 3. It suggests
that receive collision is common, but the number of blocks involved is usually
small.

Undirected graph and request protocol are also effective. Undirected
graphs have better distribution time than directed graphs (see col. 1 vs others)
because of two reasons. Since the edges are bidirectional in an undirected graph,
there are effectively double the possible connections among the nodes. Further-
more, the leaf nodes in directed graphs having no outgoing edges do not help
to distribute the received blocks, so they reduce the efficiency by reducing the
availability of the blocks.

Besides receive collision we mentioned before, there is another kind of collision
that reduces the efficiency of distribution. Bandwidth is also lost when multiple
copies of the same block are sent to the same node in a phase. We call this send
collision. Request protocol avoids send collision because for each missing block,
a node actively requests only one single neighbor to send the block.

Tightness of the analysis in [1]. Finally, we look at the results for the model
DG-1-Ph [1] more closely. We observe that the total distribution time grows
in the order of b log n, it is roughly 0.4 × b log n (see col. 1). The experimental
results suggest that data distribution does require Ω(b log n) phases to finish in
the DG-1-Ph model.
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Table 2. Random and Rarest First have similar distribution time in the Model UG-
5-Rq, which is close to the theoretical lower bound of b + O(log n)

Distribution time Random Rarest First Sequential

n = 300, b = 1200 1228 1221 3319

n = 2000, b = 1200 1247 1233 4678

n = 300, b = 3000 3034 3024 8494

n = 2000, b = 3000 3047 3037 11615

3 Performance of Simple Routing Heuristics

In BT systems, distribution of blocks is decided locally by each node, without a
central coordination. Heuristics are used to determine which blocks are sent to
which nodes at each phase. In this section, we consider both request and push
protocols, and study how different heuristics affect the distribution time.

3.1 Routing Heuristics for Request Protocols

In models with request protocols, distribution of blocks is driven by what re-
quests are sent by the nodes. We study three natural heuristics for deciding
which blocks a node should request from its neighbors. To limit the communi-
cation overhead due to the requests, we restrict that at each phase, each node u
can send at most one request for each block, and u can send at most one request
to each of its neighbors.

1. Random. One simple heuristic for sending requests is by random. That is,
at each phase, each node u repeatedly picks a random block it misses, and
sends a request for it to a random unrequested neighbor having that block.
This is the heuristic studied in the previous section, and it is observed that
Random already achieves very good distribution time.

2. Rarest First. Real-life BT systems use the heuristic Rarest First to decide
which blocks to request: At each phase, each node u counts the availability
of each block it misses, where the availability of a block is the number of
neighbors of u having that block. Then, starting from the rarest block (i.e.,
block with smallest availability), u sends requests for each block to a random
unrequested neighbor having it.
The motivation of Rarest First is to maintain balanced availability of each
block in the network, so it avoids bad distribution time due to a small number
of rare blocks.

3. Sequential. When a file is divided into blocks, each block corresponds to a
different part of the file. With the heuristic Sequential, at each phase, each
node sends requests for blocks sequentially according to their order in the
file. The motivation for this heuristic is the ease of programming and it may
lead to the good performance similar to that of Random. It may also support
streaming of the file, i.e., the node can start using the file while the file is
still being downloaded.
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Fig. 3. The number of blocks sent in different phase during the file distribution, for
n = 300 and b = 1200, in the Model UG-5-Rq. With Random and Rarest First, almost
300 blocks are sent per phase, while for Sequential, only 50 - 150 blocks are sent per
phase.

Table 3. The distribution time of different heuristics in the Model UG-5-Ph. When a
push protocol is used, Random has better distribution time than Rarest First in three
out of the four cases (bolded).

Random Rarest First Sequential

n = 300, b = 1200 1354 1356 8672

n = 2000, b = 1200 1386 1373 11365

n = 300, b = 3000 3300 3372 21594

n = 2000, b = 3000 3386 3407 28244

We assume that at each phase, each node randomly serves one of the requests
it received. We study the performance of the three heuristics in the more realistic
Model UG-5-Rq, i.e., undirected graph, at most 5 recevies per phase, and using
request protocol. We perform simulations on different combinations of n and b.
The results are shown in Table 2.

Random and Rarest First. We observe that the Random and Rarest First
heuristics give very similar performance. Rarest First has slightly better dis-
tribution time than Random, but both can distribute the file in b + O(log n)
phases.

To understand the reason for their efficiency, we investigate the case of n = 300
and b = 1200 and we measure the total number of blocks sent by the nodes in
each phase throughout the distribution time. The result is shown in Figure 3.
We observe that for both Random and Rarest First, in most phases during
the distribution time, close to 300 blocks are sent in each phase. It shows that
the uploading bandwidth among the nodes is very well utilized. We believe that
Random and Rarest First both succeed in keeping the block content of the nodes
heterogeneous, i.e., each node has content not similar to that of their neighbors.
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Thus, each node can upload some block useful to its neighbors at each phase,
and maintain the high utilization of bandwidth.

For the practical concern, Random can be implemented more easily than
Rarest First, while maintaining similar performance. We believe that Random
is a better choice than Rarest First in practice.

Sequential. Sequential has much worse distribution time than Random and
Rarest First. We observe for the case of n = 300 and b = 1200, the number of
blocks sent per phase is between 50 to 150 for most phases during the distribution
time. The low usage of bandwidth is due to the fact that many nodes have
similar content as their neighbors. Thus, no useful blocks can be uploaded to
their neighbors.

3.2 Routing Heuristics for Push Protocols

Models with push protocols have the advantage that no overhead is needed for
sending requests. In this subsection, we study the performance of the heuristics
Random, Rarest First and Sequential for push protocols.

We first state clearly how the three heuristics are defined for push protocols.
At each phase, each node u first randomly selects a neighbor v. Let S be the
set of blocks that u has but v does not. Then, the three heuristics perform as
follows.

1. Random. Send a random block in S to v.
2. Rarest First. Send the rarest block in S to v, where availability is measured

according to u.
3. Sequential. Send the block in S corresponding to the earilest part of the

file to v.

We study the performance of the three heuristics in the model UG-5-Push,
with different combinations of n and b. The results are shown in Table 3.

We observe that Random and Rarest First have very similar performance in
Push Protocols. In fact, in three out of the four cases tested, Random has smaller
distribution time than Rarest first. The reason is that with Push protocols, there
are send collisions where the same block is sent to a node from multiple neighbors
in a phase. Rarest First makes send collisions more common, thus leading to a
lost of efficiency. Sequential has even worse performance because send collision
becomes very serious in this case.

4 Concluding Remarks

In this paper we extended [1] on modelling the distribution of data blocks in BT
systems. We have studied new network features that BT systems are using and
different local routing heuristics. Our simulation confirms that Ω(b log n) phases
are needed for the model in [1] while showing that the random and rarest block
first heuristics under more realistic network setting lead to b + O(log n) total
distribution time. An interesting open problem is to provide a mathematical
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analysis of these heuristics. Other interesting problems include modelling vary
client bandwidth, and dynamic issues like new nodes joining, and nodes leaving
the system.
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Abstract. Proportional Integral (PI) controller has attracted research-
ers in industrial control processes because of its simplicity and robust
performance in a wide range of operating conditions. It has been used
to provide proportional delay differentiation on web servers in previ-
ous work. However, PI controller cannot achieve satisfactory results due
to (1) the web server’s non-linearity properties, and (2) the difficulty
of building an accurate model for the web server. To address these is-
sues, a nonlinear fuzzy PI controller is proposed in this paper, which
has the advantage of fuzzy controller while maintaining the simplicity
and robustness of PI controller. The proposed controller are self-tuned
according to the periodical online performance measurement. The exper-
imental results demonstrate that our fuzzy PI controller outperforms the
PI controller in several aspects.

Keywords: QoS, Fuzzy PI Controller, Web servers.

1 Introduction

With the wide spread usage of all kinds of web applications, the access rates
of popular web sites are growing rapidly. Besides, web servers experience an
extreme variation in access demand: sometimes very lightly loaded, sometimes
suffered from enormous connection requests. It is not economically feasible to
design web servers for peak load, because even well-equipped web servers may
still be overloaded. During overload period, not all requests can be served in a
timely manner. However, it is possible to provide a better service to premium
users. Performance-enhancing mechanisms that can achieve such QoS properties
are very important.

Lu et al. have proposed a PI controller to guarantee delays ratio among dif-
ferent classes [5]. They regarded the non-linear web server as a second order sys-
tem and determined the system parameters by system identification technique.
However, PI controller still cannot get satisfactory results on some performance
metrics, such as settling time, and oscillation.
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On the contrary, fuzzy controller is independent of accurate models and could
be a good selection for providing delays guarantee [9] [11] [12] [13]. But it is
hard to tune large amount of parameters. It is especially difficult to make initial
approximate adjustment since there is no cookery book to do the job and the
performance usually depends on the quality of expert knowledge.

In this paper, we first design a fuzzy PI controller to provide proportional delay
differentiation for web servers. It combines the advantages of fuzzy controller and
PI controller. Firstly, it shows shorter settling time with less oscillations, under
the condition of very busty traffic. At the same time it performs as well as PI
controller in steady state. Secondly, parameters determination is convenient. In
addition, the simple fuzzy set definition is easy for the parameters adjustment.

The rest of the paper is organized as follows: Section II presents the back-
ground and related work. The architecture of the system is described in Section
III. Section IV introduces the design of the fuzzy controller. Section V presents
the experimental results. Finally, section VI concludes the paper.

2 Background

In this section, we first formally specify the term ""delay"" studied in this paper,
and then compare the service delay guarantees.

2.1 Delays in Web Services

Apache [1] is typically structured as a pool of workers that handle HTTP re-
quests. Our studies use release 1.3.9 in which a worker is simply a process. Our
system can also apply to the case that a worker is a thread.

In Apache 1.3.9, when a request arrives, it enters the TCP Accept Queue
and waits for a free worker. The number of worker processes is configurable
but limited by system resources. If there is an available process, the incoming
request can be served immediately. In HTTP/1.0, each request consumes one
TCP connection. HTTP/1.1 introduced a new concept called persistent connec-
tion [3], which allows reuse of TCP connection for multiple requests from the
same clients. Therefore, it is not necessary to establish and terminate TCP con-
nection for every request. However, persistent connection gives rise to a peculiar
server bottleneck: when there is no free process, any incoming TCP connection
requests must wait until a process becomes available.

Let the connection delay denote the time interval between the arrival of con-
nection and the time that he connection is established. Let the processing delay
denote the time interval between the start of processing a request by web server
and the end of the response transmission. The service time of a single connec-
tion may be very long for HTTP/1.1 which depends on the user behavior. If
the web server is heavily loaded, which is the scenario that we consider in this
paper, lots of connection requests are queued in the TCP listening queue. From
queuing theory, the connection delay is related to the average queue length, the
average service time, and the number of simultaneous connections allowed by
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the system. Generally, the connection delay is much longer than the processing
delay during overload period. We simply use ""delay "" to represent connection
delay in this paper.

Providing delay differentiated services to web system is popular in recent
years. Admission control and scheduling strategies are used to provide differen-
tiated services. In [7], a heuristic admission control method has been proposed
to provide 90th percentile delay guarantee for the premium class in SEDA Web
server by additive-increase multiplicative-decrease (AIMD) control mechanism.
However, this approach cannot guarantee the QoS for a class and the perfor-
mance of the algorithm is very sensitive to several control parameters. In [8], an
admission control method based on a PI controller is proposed. However, they
assume that web servers can be modeled by an M/G/1/PS queuing model. How-
ever, the exponential inter-arrival distribution is not accurate to characterize the
web traffic [10]. Besides, resource scheduling by feedback control theory has been
applied to web system, for example, the PI controller is used for differentiated
services in [14]. Furthermore, the queuing theory has been combined to provide
differentiated delay services in [5]. But the queuing theory can only work well in
a long term scale.

Other than providing differentiated services, feedback control has been used
to adjust the KeepAlive and MaxClient of Apache. The approach shows quick
convergence and stability. However, it cannot directly address the important
metrics for web server, like throughput and response time.

2.2 Semantics of Service Delay Guarantees

Lu et al. have introduced the concept of absolute delay guarantee and relative
delay guarantee in [14].

– Absolute Delay Guarantee: It guarantees connection delays of specific
high priority classes at the expense of longer delay of lower priority classes.
[11] and [13] have proposed fuzzy controllers to guarantee absolute delay.
However, if the system load grows arbitrarily high, it is impossible to satisfy
the desired delays of all classes under overload conditions.

– Relative Delay Guarantee: It guarantees connection delay ratios between
different classes. For example, if class 0 has a desired relative delay of 1.0,
and class 1 has a desired relative delay of 3.0, it would like to guarantee that
the connection delay of class 0 is one-third of that of class 1.

It is obvious that services for users of low priority classes cannot be guaranteed
by absolute delay guarantee. Therefore, connections of low priority users may be
reset. However, relative delay guarantee can provide fair services for users among
different classes, and guarantee better services of high priority classes. Therefore,
the fuzzy PI controller is proposed to provide relative delay guarantee.

3 Architecture

Our web server architecture is shown in Fig. 1, which includes three modules:
Connection Scheduler, Delay Ratio Monitor, and Fuzzy PI Controller.
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Fig. 1. The System Architecture

– Connection Scheduler. It listens to the well-known port and accepts in-
coming requests. The Scheduler classifies requests into different classes ac-
cording to IP addresses. The scheduler maintains a FIFO connection queue
and a process counter for each class. A new request is allocated to a free
process only if the number of consumed processes for the class is less than
its process counter.

– Delay Ratio Monitor. It carries out the measurements of the proportional
delay ratios experienced by requests of adjacent class ki and class ki+1 peri-
odically.

– Fuzzy PI Controller. It guarantees a preset delay ratios between different
classes. The delay ratios are guaranteed by assigning suitable number of
processes to handle requests from different classes.

At the mth sampling period, the controller computes the desired relative de-
lays, Wk|0 ≤ k < N , based on the measured delays, Ck(m)|0 ≤ k < N , gath-
ered by the Delay Ratio Monitor. At the beginning of every sampling period,
pk|0 ≤ k < N , are re-computed. pk is used to enforce the number of processes
assigned to class k. The major objective of the controller is to keep the delay
ratios between adjacent classes to the desired delay ratio (3.0) which we called it
set point. The desired delay ratio between class k and k − 1 is denoted by DRk.

4 Design of the Proposed Fuzzy PI Controller

Feedback control provides a sound way to keep the delay ratios around the set
point. The PI controller is widely used due to its simplicity. As earlier mentioned,
PI controller cannot have the satisfactory results on several metrics, i.e., settling
time and oscillation, due to nonlinearity of the web servers and the absence of an
accurate model. To overcome the limited performance of PI controller, a fuzzy
PI controller is proposed in this section. Control gains in the proposed fuzzy
PI controller are self-tuned according to nonlinear functions of the inputs when
compare with the fixed gains of PI controller. In this section, we briefly describe
the mathematical principle of fuzzy PI controller, and then introduce how it
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y

Fig. 2. The structre of the fuzzy PI controller for two classes

self-tines to system uncertainty. We first establish the three main steps in the
design of fuzzy PI controller: fuzzification, inference, and defuzzification.

In our paper, two classes (premium and basic) are considered. The basic struc-
ture of the proposed fuzzy PI controller for two classes is presented as Fig. 2.
There are two inputs for the proposed fuzzy PI controller. One is the product
of a system parameter Ki and the delay error (e(m)), that is the difference be-
tween the set point DR1 and the measured delay ratio V (m) = C1/C0. Another
input is the product of system parameter Kp and the error rate, ev(m) which
is defined as: ev(m) = e(m) − e(m − 1). We have introduced a parameter U(m)
which equals p0/p1 to control the number of processes assigned to class 0 and
class 1. The value of U , p0 and p1 is updated once for a sampling period. There-
fore, ΔU , are used to adjust the output of the fuzzy PI controller, U . The two
system parameters, Kp and Ki are the conventional proportional and integral
gains, which can be obtained as follows:

Firstly, we consider a classic PI controller:

U(m) = Kpe(m) + Ki

m∑

n=0

e(n) (1)

where U(m) = p0(m)/p1(m), V (m) = C1(m)/C0(m) and e(m) = DR1 − V (m);
Then, it is easy to get:

ΔU(m) = Kp(e(m) − e(m − 1)) + Kie(m) (2)

Let ev(m) = e(m) − e(m − 1), then the fuzzy PI controller output is:

ΔU(m) = ffuzzy(Kie(m), Kpev(m)) (3)

4.1 The Computation of Kp and Ki

To design the proportional and integral gains for the proposed controller, the
model for web server should be constructed. Since no accurate model can be
used for the web server, we use the model by system identification which has
been defined in [14]. Due to space limitation, we only conclude the results here.
The model for our specific system is:
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Fig. 3. The membership function of E and EC

Fig. 4. The membership function of U

V (m) = 0.34V (m − 1) − 0.08V (m − 2) + 0.51U(m − 1) + 0.41U(m − 2) (4)

where the coefficients are obtained by the least-squares estimator. The PI con-
troller for our system used as in [14] is:

U(m) = U(m − 1) + g(E(m) − rE(m − 1)) (5)

Combining (1) and (5), the proportional and integral gains as following:

Kp = g · r, Ki = g − g · r (6)

Based on above model, the root locus method can be used to get the value of
g and r. For our system, g = 0.268 and r = 0.05 are suitable.

4.2 The Proposed Fuzzy PI Controller

In this section, we describe the three steps of the fuzzy controller.

– Fuzzification. The membership functions for input and output were defined
as Fig. 3 and Fig. 4. The linguistic variables for two numeric inputs and one
output are E, EC and U respectively. They are used to handle uncertainties
in computer systems.
In Fig. 3, L1 and L2 are defined as the maximum value of Kie(m) and
Kpev(m). In our experiment, [-12.2, 12.2] is large enough to observe delay
ratio error and the error rate. Therefore, we have:

L1 = 12.2Ki, and L2 = 12.2Kp
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Note that e(m) can be arbitrarily large due to busty traffic or the initial
state. When this happen, the controller behaves like a classic PI controller
according to the value of ev(m). In the membership function of output, H
is set as 4. Numerous experiments verify that this setting is reasonable and
acceptable.

– Inference: The actions of the fuzzy controller are guided by a set of IF-
THEN rules. The rules established for our controller is relatively easy which
can be concluded as following: Rule 1 : If E is negative and EC is negative
THEN U is negative;
Rule 2 : If E is negative and EC is positive THEN U is zero;
Rule 3 : If E is positive and EC is negative THEN U is zero;
Rule 4 : If E is positive and EC is positive THEN U is positive;
For each rule, the IF part considers a position of current systems and THEN
part indicates how the process ratio should be changed. Negative (decrease)
and positive (increase) are the linguistic variables. In short, Rule 1 and 4
consider situations that the E and EC are of the same sign, so the output
should be large to make the process quick converge. Conversely, Rule 2 and
3 describe situations that E and EC are of the opposite sign, so the output
should be small to reduce overshoots and settling time.

– Defuzzification: To defuzzify the incremental control of fuzzy control law,
the membership function for output is

U =
∑

bi · μi∑
μi

(7)

where bi is the output for Rule i and μi is the corresponding membership
value for Rule i. μi is computed by the minimum value, i.e., μi = μm(E) ∧
μn(EC), where μ(M) is the membership degree of linguistic variable ”M” for
the linguistic value ”m”. In our controller, m can be ”positive” or ”negative”.

According to equation 2 and 7, the control gains Ki and Kp are self-tuning.
This is also the reason why the fuzzy PI controller performs better than the PI
controller with fixed gains.

Finally, we remark that the overhead of this algorithm is small since only mul-
tiplications and additions are found in the algorithm. Furthermore, the controller
only needs to adjust the process assignment once a sampling period.

5 Experiments

We have modified the source code of Apache 1.3.9 web server which runs on a
Linux platform [2] to implement the adaptive architecture and fuzzy PI control
algorithm. The sampling period was set to 30 seconds. The timeout of HTTP/1.1
connection was set to default value (15 seconds). The controller computes the
number of processes assigned to each class.

All experiments were conducted on a test-bed includes a server with a 2.8GHz
Pentiumprocessor and1GBRAMrunningLinux-2.6.12 anda set of clients running
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Fig. 5. The delay ratio of the PI controller and the fuzzy PI controller

Linux-2.4.18.The server and the clients were connected by a 1-Gbps Ethernet. The
Surge workload generator [4] was used to generate web traffic. The percentage of
base, embedded, and loner objects were 30%, 38%, and 32%, respectively.

5.1 Experiment 1

– Server: The total number of processes was configured to 128. It is a constant
number throughout the experiment. The numbers of processes were initially
the same which is 64 for both class 0 (premium) and class 1 (basic).

– Client: 300 class 0 and 200 class 1 clients are simulated at the beginning.
At 1000th second, 200 new class 0 and 200 new class 1 clients are simulated.

Fig. 5 shows the behaviors of the PI controller and the fuzzy PI controller. The
delay ratio of both controllers deviate from the set point seriously after load chang-
ing. After shorter period of time, the fuzzy PI controller reacted and re-converged
to the set point at around 1700th second. However, it takes longer time for the PI
controller to converge to the set point (at around 2200th second). The PI controller
also showsmore violent oscillations. In order to quantify the oscillation, the relative
difference between the measured and desired delay from the initial state to the time
when the server reached the steady state has been defined as following.

Et =
n∑

i=1

Ti· | Errori | (8)

where Ti represents the sampling point i and Errori represents the error be-
tween the delay ratio and the set point. Smaller Et means better controller
performance. We also define another metric Diff to measure the performance
improvement on oscillations over the PI controller.

Table 1. Et of Classic PI controller and Fuzzy PI controller

PI Controller Fuzzy PI Controller

Et 366.1 266.6
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Fig. 6. The delay ratio of the PI controller and the fuzzy PI controller

Table 2. Et of Classic PI controller and Fuzzy PI controller

PI Controller Fuzzy PI Controller

Et 280.8 183.6

Diff =
Et(PI) − Et(FuzzyPI)

Et(PI)
(9)

Table 1 shows the Et of the fuzzy PI controller is much smaller, and the fuzzy
PI controller improved the performance by Diff = 27.2%.

5.2 Experiment 2

This experiment demonstrated the fuzzy PI controller performed much better
than the PI controller under large load disturbance.

– Server: The server is configured as in experiment 1.
– Client: 200 class 0 and 300 class 1 clients are simulated at the beginning.

At 1000th second, 200 new class 0 and 200 new class 1 clients are simulated.

The experimental results are shown in Fig. 6. At 1000th second, the delay
ratios of both controllers decreased to a trough value about 1.5. The delay of class
1 users increased, since number of class 1 users increased in a sudden. In such
circumstance, the delay ratio drops to a very small value. After 200 seconds, both
controllers react and the delay ratios rise. The delay ratio of fuzzy PI controller
converged at around 1550th seconds, and some low amplitude oscillations around
the set point after 1550th seconds. However, the delay ratio of PI controller
converged at 2000th seconds, and there are some oscillations around the set
point after the convergent time.

Table 2 shows Et of PI controller is also much larger than the fuzzy PI con-
troller due to its large oscillation and long settling time. The fuzzy PI controller
improved performance by Diff = 34.6%.

6 Conclusions and Future Works

In this paper, we present a fuzzy PI controller which combines the advantages
of classic PI controller and fuzzy controller. The self-tuning property makes it
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more robust. The experimental results demonstrate that it performs better than
the classic PI controller on settling time and oscillations.
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Abstract. We study three closely related problems motivated by the prediction
of RNA secondary structures with arbitrary pseudoknots: the MAXIMUM BASE

PAIR STACKINGS problem proposed by Ieong et al. [19], the MAXIMUM STACK-
ING BASE PAIRS problem proposed by Lyngsø [22], and the 2-INTERVAL

PATTERN problem proposed by Vialette [36]. For MAXIMUM BASE PAIR

STACKINGS and MAXIMUM STACKING BASE PAIRS, we present improved
approximation algorithms that can incorporate covariance information from
comparative analysis as explicit input of candidate base pairs. For 2-INTERVAL

PATTERN, we present improved approximation algorithms on unitary and near-
unitary input, and propose a new variant called LENGTH-WEIGHTED BALANCED

2-INTERVAL PATTERN, which is natural in the nearest-neighbor energy model
that emphasizes base pair stacking.

1 Introduction

RNAs are versatile molecules: messenger RNAs carry genetic information and act as
the intermediary agent between DNAs and proteins; ribosomal RNAs, transfer RNAs,
and other non-coding RNAs play important structural, regulatory, and catalytic roles in
cells. To understand fully the various functions of RNAs, we need to first understand
their structures. The primary structure of an RNA is the sequence of nucleotides (that
is, the four different bases A, C, G, and U) in its single-stranded polymer. An RNA
folds into a three-dimensional structure by forming hydrogen bonds between pairs of
complementary bases, such as the Watson-Crick pairs G-C and A-U and the wobble
pair G-U, that are nonconsecutive in the sequence. The three-dimensional arrangement
of the atoms in the folded RNA molecule is its tertiary structure; the collection of base
pairs in the tertiary structure is the secondary structure. The secondary structure of an
RNA is the scaffold of its tertiary structure; accurate prediction of secondary structures
is a prerequisite for the more detailed structural analysis of RNAs.

Most early research on RNA secondary structure prediction adopts the thermody-
namic approach: each possible secondary structure has a global free energy depending
on the recursive decomposition of the structure and on a set of experimentally deter-
mined energy parameters; the optimal secondary structure corresponds to the minimum
global free energy. When pseudoknots are excluded, the optimal secondary structure
of an RNA can be computed by dynamic programming algorithms in O(n3) time and
O(n2) space [27,39,38,31,24]. These algorithms are the basis of popular software pack-
ages for RNA secondary structure prediction such as mfold [25,37] and Vienna
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[17,16]. There has been considerable effort [29,35,2] on extending the dynamic pro-
gramming algorithms to include pseudoknots. However, these extended algorithms typ-
ically have very high complexities, ranging from O(n4) to O(n6) in time and from
O(n3) to O(n4) in space, which make them impractical even for RNA sequences of
only a few hundred bases. Furthermore, as noted by Lyngsø and Pedersen [23] and also
by Ieong et al. [19], these algorithms can handle only limited types of pseudoknots:
the exact types are implicit in the algorithms and difficult to determine. On the other
hand, if arbitrary pseudoknots may be included, then the prediction problem becomes
exceedingly difficult, typically NP-hard or even APX-hard [2,23,19,22,4,36,9]. The ap-
parent difficulty of the pseudoknot prediction problem naturally prompts researchers
to explore heuristic approaches such as quasi-Monte-Carlo simulation [1], genetic al-
gorithms [14,5,32], and, very recently, simulated annealing with pull moves on a 3D
triangular lattice [21]. However, the lack of theoretical guarantees of these heuristics
makes it impossible to bound how far a given prediction is from the optimal solution.

Hybrid methods for pseudoknot prediction, such as maximum weighted matching
[10,33] and iterated loop matching [30], are based on a combination of thermodynamic
and comparative [28] approaches. These methods can often achieve better prediction
accuracies than algorithms based on the thermodynamic approach alone because, be-
side the RNA sequence, they also take as input a covariance matrix with one entry for
each pair of bases in the sequence. The covariance matrix can be obtained from a mul-
tiple alignment of the input RNA sequence and its homologous sequences; it contains
additional evolutionary evidence for the likelihood of individual base pairs in the RNA
secondary structure that cannot be captured by the few energy parameters in the ther-
modynamic approach. The maximum weighted matching method [10,33], for example,
then reduces the RNA secondary structure prediction problem to a graph-theoretical
problem by interpreting the covariance matrix as the adjacency matrix of a weighted
graph: each RNA base is a vertex, and each pair of bases is an edge weighted by the
pair covariance.

One shortcoming of the maximum weighted matching method [10,33] is that it im-
plicitly adopts an energy model in which the energy of each base pair is considered
independently. In the more realistic nearest-neighbor energy model [2,23,19,22], the
energy of each base pair depends not only on its two bases but also on the other adja-
cent base pairs. According to the Tinoco model [34], an RNA structure can be recur-
sively decomposed into loops with independent free energy; the energy of each loop
is an affine function in the number of unpaired bases and the number of interior base
pairs. The only type of loops without unpaired bases are formed by base pair stacking;
such loops have negative energy and stabilize the RNA structure. We next review some
concepts related to base pair stacking.

Let S be an RNA sequence. Denote by S[i] the i’th base of S and by S[i, j] the
subsequence of bases S[i], S[i + 1], . . . , S[j]. A base pair (i, j) of S is a pair of bases
S[i] and S[j] such that j ≥ i+2 (the two bases must be nonconsecutive). A pseudoknot
is composed of two interleaving base pairs (i, j) and (k, l) with i < k < j < l.
A stacking loop is a loop of four bases formed by two adjacent base pairs (i, j) and
(i + 1, j − 1). A set of m base pairs S = {(i1, j1), . . . , (im, jm)} is a valid secondary
structure of S if the 2m indices ik and jk are all distinct, that is, each base participates
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Fig. 1. Pseudoknot PKb of the upstream pseudoknot domain (UPD) of the 3’-UTR of beet soil-
borne virus RNA 1. The sequence of bases follows the thick curve; the base pairs are connected
by thin lines.

in at most one base pair. For a secondary structure S, the number of base pair stackings
is defined as

BPS(S) =
∣
∣{(i, j) ∈ S | (i + 1, j − 1) ∈ S}

∣
∣,

and the number of stacking base pairs is defined as

SBP(S) =
∣
∣{(i, j) ∈ S | (i + 1, j − 1) ∈ S ∨ (i − 1, j + 1) ∈ S}

∣
∣.

Note that the number of base pair stackings is exactly the number of stacking loops in
a secondary structure. Denote by ([i, i + q], [j, j − q]) a helix of q consecutive stacking
loops formed by q + 1 base pairs (i, j), (i + 1, j − 1), . . ., (i + q, j − q). Given a
maximal helix H of m base pairs, we have BPS(H) = m−1 for m ≥ 1, SBP(H) = m
for m > 1, and SBP(H) = 0 for m = 1. For example, in the pseudoknotted secondary
structure1 shown in Figure 1, the number of base pairs is 10, the number of base pair
stackings is 7, and the number of stacking base pairs is 9.

Ieong et al. [19] formulated the RNA secondary structure prediction problem as an
optimization problem: given an RNA sequence, the MAXIMUM BASE PAIR STACK-
INGS problem is to find a secondary structure with the maximum number of stack-
ing loops (base pair stackings). Ieong et al. [19] showed that MAXIMUM BASE PAIR

STACKINGS is NP-hard when the secondary structure is restricted to be planar. Their
construction uses only the Watson-Crick base pairs A-U and C-G. Later, Lyngsø [22]
demonstrated that MAXIMUM BASE PAIR STACKINGS is still NP-hard without the pla-
nar restriction, even for binary sequences with 0-1 base pairs. Lyngsø also showed that
the related MAXIMUM STACKING BASE PAIRS problem, which is to find a secondary
structure with the maximum number of stacking base pairs, is also NP-hard when the
input sequence is over an unbounded alphabet Σ and the legal pair types form a subset
of Σ × Σ. Several algorithms have been proposed for the two problems. For MAX-
IMUM BASE PAIR STACKINGS over the canonical {A, C, G, U} alphabet with the
Watson-Crick base pairs, Ieong et al. [19] presented an O(n3) time O(n2) space 2 ap-
proximation for the planar case and an O(n) time 3 approximation for the general case.
Lyngsø [22] presented a polynomial time exact algorithm for MAXIMUM BASE PAIR

STACKINGS and a polynomial time approximation scheme for MAXIMUM STACKING

BASE PAIRS, both over a fixed-size alphabet Σ with a subset B ⊆ Σ × Σ of legal pair
types.

1 From the PseudoBase [6] at http://wwwbio.leidenuniv.nl/∼batenburg/PKBase/PKB00116.html
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In Ieong et al.’s and Lyngsø’s formulations of the two problems [19,22], the set of
possible base pairs that might appear in the secondary structures are determined im-
plicitly by a prespecified set of legal pair types such as the Watson-Crick base pairs.
Instead, the candidate base pairs may be given explicitly as input. For example, we can
take advantage of the additional information from comparative analysis [28,10,33,30]
by composing a candidate set of base pairs with pair covariances at least some thresh-
old value. On explicit input of candidate base pairs, the two optimization problems are
clearly NP-hard, since they generalize the previous formulations [19,22]. It is natural
that we investigate their approximation algorithms. Lyngsø’s algorithms [22], beside
having very high complexities of Ω(n81) in time and Ω(n80) in space even for the
canonical {A, C, G, U} alphabet, depend on a look-up table technique assuming that
legal base pairs are implicitly determined by the pair types; therefore they cannot be
adapted to explicit input of candidate base pairs. On the other hand, Ieong et al.’s 3
approximation for MAXIMUM BASE PAIR STACKINGS [19] can be easily adapted to
input of candidate base pairs. In this paper, we improve Ieong et al.’s 3 approximation
for MAXIMUM BASE PAIR STACKINGS to a 8/3 approximation, and present the first
non-trivial 5/2 approximation for MAXIMUM STACKING BASE PAIRS, both on explicit
input of candidate base pairs.

Vialette [36] proposed a geometric representation of the RNA secondary structure as
a set of 2-intervals. Given a single-stranded RNA molecule, a subsequence of consecu-
tive bases of the molecule can be represented as an interval on a single line, and a pos-
sible (stacked) pairing of two disjoint subsequences can be represented as a 2-interval,
which is the union of two disjoint intervals. Given a candidate set of 2-intervals, a max-
imum pairwise-disjoint subset restricted to certain prespecified geometrical constraints
gives a macroscopic approximation of the RNA secondary structure.

We review some definitions [36]. A 2-interval D = (I, J) consists of two disjoint
(closed) intervals I and J such that I < J , that is, I is completely to the left of J .
Consider two 2-intervals D1 = (I1, J1) and D2 = (I2, J2). D1 and D2 are disjoint if
the four intervals I1, J1, I2, and J2 are pairwise disjoint. Define three binary relations
for disjoint pairs of 2-intervals:

Preceding: D1 < D2 ⇐⇒ I1 < J1 < I2 < J2.
Nesting: D1 � D2 ⇐⇒ I2 < I1 < J1 < J2.
Crossing: D1 � D2 ⇐⇒ I1 < I2 < J1 < J2.

The two 2-intervals D1 and D2 are R-comparable for some R ∈ {<, �, �} if either
(D1, D2) ∈ R or (D2, D1) ∈ R. (For example, D1 and D2 are �-comparable if either
D1 � D2 or D2 � D1.) Note that the set of binary relations {<, �, �} is complete
in the sense that any two disjoint 2-intervals are R-comparable for some R ∈ {<, �
, �}. Given a model R, which is a non-empty subset of {<, �, �} (there are 7 such
subsets), a set D of 2-intervals is R-structured if any two distinct 2-intervals in D are
R-comparable for some R ∈ R. Given a set D of 2-intervals and a model R, the
2-INTERVAL PATTERN problem is to find a maximum-size R-structured subset of 2-
intervals in D.

Beside the various models R, various restrictions can also be imposed on the input
2-interval set D for the 2-INTERVAL PATTERN problem. Define the support of a set D
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of 2-intervals, Support(D), as the set of intervals {I, J | (I, J) ∈ D}. There are four
common types of restrictions:

Unlimited: No restrictions.
Balanced: Every 2-interval in D consists of two intervals of equal length.
Unitary: Every interval in the support of D has a unit length.
Point: The intervals in the support of D are pairwise disjoint (therefore they can

be considered as intervals of unit length, or, points).

The three types of restrictions, unlimited, unitary, and point, were originally introduced
by Vialette [36]; the balanced restriction was later proposed by Crochemore et al. [12]
because it is natural in the biological setting. In particular, we note that a helix ([i, i +
q], [j, j−q]) of q consecutive stacking loops can be represented by a balanced 2-interval.

Table 1. (a) The complexities of the 2-INTERVAL PATTERN problem. L = Θ(n2) and d = Θ(n)
in the worst case [11]. (b) The best approximation ratios for the 2-INTERVAL PATTERN problem.
Our improvements are marked by “old → new”.

Unlimited Balanced Unitary Point
{<, �, �} APX-hard [4] O(n

√
n) [26]

{�, �} APX-hard [4] O(n log n + L) [11]
{<, �} NP-complete [9] complexity unknown
{<, �} O(n log n + dn) [11]

{�} O(n log n + L) [11]
{�} O(n log n) [9]
{<} O(n log n) [36]

(a)

Unlimited Balanced Unitary Point
{<, �, �} 4 [4] 4 [12] 3 [4] → 2 + ε N/A
{�, �} 4 [12] 4 [12] 3 [12] → 2 + ε N/A
{<, �} 2 [20] 2 [20] 2 [20] 2 [12]

(b)

Since Vialette’s pioneering work [36], the 2-INTERVAL PATTERN problem has been
extensively studied. We summarize the complexities of the problem over its various
models and restrictions in Table 1(a). Because the � relation directly models the pseudo-
knots in RNA secondary structures, it is not surprising that the 2-INTERVAL PATTERN

problem is NP-hard or even APX-hard over the three models {<, �, �}, {�, �}, and
{<, �}; these results [4,9] are compatible with the hardness results for the other mod-
els [2,23,19,22] and are consistent with our knowledge that RNA secondary structures
with pseudoknots are difficult to predict in practice. Naturally, researchers have directed
their attention to the design of efficient approximation algorithms. We refer to Table 1(b)
for the best approximation ratios of polynomial time approximation algorithms for the
2-INTERVAL PATTERN problem. In this paper, we present improved approximation al-
gorithms for the 2-INTERVAL PATTERN problem on unitary input (as marked in Ta-
ble 1(b)) and on near-unitary input (to be introduced later).
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The rest of the paper is organized as follows. In Section 2, we prove a lemma for 2-
interval graphs. In Section 3, we present an improved approximation algorithm for the
MAXIMUM BASE PAIR STACKINGS problem and the first non-trivial approximation
algorithm for the MAXIMUM STACKING BASE PAIRS problem, on explicit input of
candidate base pairs. In Section 4, we present improved approximation algorithms for
the 2-INTERVAL PATTERN problem. In Section 5, we conclude with discussion.

2 A Graph-Theoretic Lemma for 2-Intervals

Let D be a set of 2-intervals. Without loss of generality, assume that each interval in
Support(D) is a closed segment [u, v] between two integer coordinates u and v. Define
the length of an interval as the number of integer coordinates (which correspond to
the individual bases) it contains: the length of [u, v] is therefore v − u + 1. Denote by
�max(D) and �min(D), respectively, the lengths of the longest and the shortest intervals
in Support(D). Define the 2-interval graph G(D) as the undirected graph with a vertex
for each 2-interval in D and with an edge between a pair of vertices if and only if
the corresponding 2-intervals are not disjoint. In an undirected graph, a d-claw C is
an induced subgraph K1,d that consists of an independent set TC of d vertices, called
talons, and a center vertex zC that is connected to all the talons. A graph is d-claw-free
if it has no d-claws. We observe an important property of 2-interval graphs:

Lemma 1. For a set D of 2-intervals with �min(D) = a and �max(D) = b, the 2-
interval graph G(D) is (5 + 2� b−2

a 	)-claw-free.

Proof. Let I be an interval in Support(D) and let II ⊆ Support(D) be a set of disjoint
intervals that intersect I . All intervals in II are completely contained in I except the
leftmost one and the rightmost one, which occupy at least two integer coordinates in I .
Therefore the total number of intervals in II is at most 2 + � b−2

a 	. It follows that each
2-interval in D has at most 4 + 2� b−2

a 	 independent neighbors in the 2-interval graph
G(D). 
�

3 Approximation Algorithms for MAXIMUM BASE PAIR

STACKINGS and MAXIMUM STACKING BASE PAIRS

We first present a 8/3 approximation algorithm for MAXIMUM BASE PAIR STACK-
INGS. For an input sequence S of n bases and a candidate set C of m base pairs, let S
be the set of stacking loops output by the algorithm. Initially, S is empty, and all bases
in S are unmarked. Our algorithm consists four steps:

1. Repeatedly find the leftmost 5 consecutive stacking loops (that is, find the 2-interval
([u, u + 5], [v − 5, v]) such that u is as small as possible) formed by base pairs in C
with unmarked bases in S, add these stacking loops to S, then mark all their bases.

2. Repeatedly find any 4 consecutive stacking loops formed by base pairs with un-
marked bases, add them to S, then mark all their bases.

3. Repeatedly find any 3 consecutive stacking loops formed by base pairs with un-
marked bases, add them to S, then mark all their bases.
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4. For each single stacking loop or two consecutive stacking loops formed by base
pairs with unmarked bases, add the corresponding 2-interval to D. Construct the 2-
interval graph G(D) and assign each vertex a weight: 1 for a single stacking loop,
and 2 for two consecutive stacking loops. Find a maximum weight independent
set I in G(D) using Berman’s 5/2 approximation algorithm [7] for MAXIMUM

WEIGHT INDEPENDENT SET in 5-claw-free graphs. For each 2-interval in I, add
the corresponding stacking loops to S.

We show that our algorithm indeed achieves a 8/3 approximation for MAXIMUM

BASE PAIR STACKINGS. The first three steps of our algorithm are similar to the first
two steps of Ieong et al.’s GreedySP algorithm [19]: our first step is identical to Ieong
et al.’s first step with parameter i = 5; our second and third steps are Ieong et al.’s
second step with parameters k = 4 and k = 3. For completeness of exposition, we
nevertheless incorporate a sketch of their analysis in our analysis in the following.

Let s1, s2, s3, and s4, respectively, be the numbers of stacking loops found by the
first, second, third, and fourth steps of our algorithm. Let S∗ be the set of stacking loops
in an optimal secondary structure. Let s∗1, s∗2, and s∗3, respectively, be the numbers of
stacking loops in S∗ that intersect the stacking loops found by the first, second, and
third steps of our algorithm. Let s∗4 be the number of remaining stacking loops in S∗,
which are represented by 2-intervals in D. We have |S| = s1 + s2 + s3 + s4 and
|S∗| = s∗1 + s∗2 + s∗3 + s∗4.

For each k consecutive stacking loops D found by the first three steps of our algo-
rithm, it is clear that the number of stacking loops in S∗ that intersect them is at most
2(k + 2), with k + 2 for each interval of the 2-interval D. By always choosing the
leftmost 5 consecutive stacking loops D5 in the first step, we can guarantee that the left
interval of the 2-interval D5 intersects at most 5 + 1 stacking loops in S∗. Suppose
the contrary that the left interval of D5 intersects 7 stacking loops in S∗, then these 7
stacking loops must be consecutive, and the leftmost 5 of these stacking loops should
have been chosen instead of D5. We therefore have the following inequality:

s∗1
s1

≤ 5 + 1 + 5 + 2
5

= 13/5 = 2.6. (1)

With all 5 consecutive stacking loops found by the first step, we can guarantee that
each interval of a 2-interval D4 (consisting of 4 consecutive stacking loops) found by
the second step of our algorithm intersects at most 4 + 1 stacking loops in S∗. Suppose
the contrary that an interval of D4 intersects 6 stacking loops in S∗, then these 6 stack-
ing loops must be consecutive and, consequently, must contain 5 consecutive stacking
loops. This is a contradiction. We have the following inequality:

s∗2
s2

≤ 4 + 1 + 4 + 1
4

= 10/4 = 2.5. (2)

A similar analysis shows the following inequality for the third step:

s∗3
s3

≤ 3 + 1 + 3 + 1
3

= 8/3 ≈ 2.67. (3)

In the fourth step, each 2-interval in D is balanced and corresponds to either a single
stacking loop with interval length 2, or two consecutive stacking loops with interval
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length 3. Therefore we have �min(D) = 2 and �max(D) = 3. It follows from Lemma 1
that the 2-interval graph G(D) is 5-claw-free. Berman’s 5/2 approximation algorithm
[7] for MAXIMUM WEIGHT INDEPENDENT SET in 5-claw-free graphs guarantees that

s∗4
s4

≤ 5/2 = 2.5. (4)

Combining inequalities (1), (2), (3), and (4), we have

|S∗|
|S| =

s∗1 + s∗2 + s∗3 + s∗4
s1 + s2 + s3 + s4

≤ 8/3.

We give an analysis of the complexities of our algorithm. Using an adjacency matrix
representation of the candidate set of base pairs, the first three steps of our algorithm
can be implemented in O(n2) time and space, which are optimal in the worst case. The
fourth step of our algorithm is the dominating step. The 2-interval graph G(D) has at
most O(m) vertices and O(m2) edges; the construction of the graph takes O(n2 +m2)
time and space. Berman’s algorithm [7], in general, achieves only a d/2 + ε approxi-
mation for MAXIMUM WEIGHT INDEPENDENT SET in d-claw-free graphs: when the
weights of the vertices are super-polynomial in the number of vertices, a rescaling pro-
cedure is necessary to ensure a polynomial running time at the price of an additional
ε in the approximation ratio. However, we note that each of the O(m) vertices in our
2-interval graph G(D) has an integer weight of either 1 or 2. This implies that the num-
ber of iterations of Berman’s local-improvement algorithm is at most O(m). For our
application, the rescaling procedure is therefore unnecessary and a 2.5 approximation
can be obtained. Each of the O(m) iterations of Berman’s SQUAREIMP algorithm [7]
on G(D) runs in O(m4) time to find an improving 4-claw. The overall complexities of
our algorithm are therefore O(n2 + m2 + Tw(m)) in time and O(n2 + m2) in space,
where Tw(m) = O(m5).

We next present a 5/2 approximation algorithm for MAXIMUM STACKING BASE

PAIRS. This algorithm is almost identical to our algorithm for MAXIMUM BASE PAIR

STACKINGS except that the first three steps are omitted and the fourth step is modified
to assign a weight of 2 for a single stacking loop and a weight of 3 for two consecutive
stacking loops. A crucial observation here, as noted by Lyngsø [22], is that we only
need to consider balanced 2-intervals of interval length (the number of stacking base
pairs) either 2 or 3, since every balanced 2-interval of interval length more than 3 can
be decomposed into several balanced 2-intervals of interval length either 2 or 3 with the
same total weight. We have the following theorem:

Theorem 1. Given a sequence of n bases and a candidate set of m = O(n2) base
pairs, MAXIMUM BASE PAIR STACKINGS can be approximated with a ratio of 8/3
and MAXIMUM STACKING BASE PAIRS can be approximated with a ratio of 5/2 in
O(n2 +m2 +Tw(m)) time and O(n2 +m2) space, where Tw(m) = O(m5) is the time
required to obtain a 5/2 approximation for MAXIMUM WEIGHT INDEPENDENT SET

in a 5-claw-free graph of m vertices with small integer weights.
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4 Approximation Algorithms for 2-INTERVAL PATTERN

The {<, �, �}-structured 2-INTERVAL PATTERN problem is essentially the MAXIMUM

INDEPENDENT SET problem in 2-interval graphs. Halldórsson [15, Theorem 3.1 and
Corollary 3.1] showed that, using a local-improvement heuristic2, MAXIMUM INDE-
PENDENT SET in (k +1)-claw-free graphs can be approximated with a ratio of k/2+ ε
in O(nlogk 1/ε) time, for any k ≥ 4. Given a set D of n 2-intervals, we can construct
the 2-interval graph G(D) in O(n2) time, then find a c + ε approximation for MAXI-
MUM INDEPENDENT SET in this (2c+1)-claw-free graph in O(nO(logc 1/ε)) time using
Halldórsson’s algorithm, where c = 2 + � �max(D)−2

�min(D) 	. We have the following theorem:

Theorem 2. For a set D of n 2-intervals, the {<, �, �}-structured 2-INTERVAL PAT-
TERN problem can be approximated with a ratio of c + ε, for any constant ε > 0, in
O(n2 + T1(n)) time, where c = 2 + � �max(D)−2

�min(D) 	 and T1(n) = O(nO(logc 1/ε)) is the
time required to obtain a c + ε approximation for MAXIMUM INDEPENDENT SET in a
(2c + 1)-claw-free graph of n vertices.

The following two corollaries, for the unitary and the near-unitary cases, respectively,
are immediate:

Corollary 1. For a set of unitary 2-intervals, the {<, �, �}-structured 2-INTERVAL

PATTERN problem can be approximated with a ratio of 2 + ε, for any constant ε > 0,
in polynomial time.

Corollary 2. For a set D of 2-intervals, the {<, �, �}-structured 2-INTERVAL PAT-
TERN problem can be approximated with a ratio of 3+ε when �max(D) ≤ 2�min(D)+1,
and with a ratio of 2 + ε when �max(D) ≤ �min(D) + 1, for any constant ε > 0, in
polynomial time.

As noted by Crochemore et al. [12], the {�, �}-structured 2-INTERVAL PATTERN prob-
lem on input of n 2-intervals reduces to O(n) {<, �, �}-structured 2-INTERVAL PAT-
TERN problems. Therefore, with an extra O(n) multiplicative factor in the running time,
our algorithms for {<, �, �}-structured 2-INTERVAL PATTERN can be extended to ap-
proximate{�, �}-structured 2-INTERVAL PATTERN with the same approximation ratios.

5 Discussion

In this paper, we presented improved approximation algorithms for three closely related
optimization problems with application to the prediction of RNA secondary structures
with arbitrary pseudoknots. Admittedly, although our algorithms achieve improved ap-
proximation ratios, their theoretical time complexities are prohibitive due to heavy use
of the local-improvement technique [15,7]. Local-improvement algorithms are expen-
sive because of the exhaustive search of improving local graph structures. The search
algorithms themselves, however, are very simple. It is quite possible that, with more

2 Halldórsson [15] noted that Hurkens and Schrijver [18] had previously obtained similar results
using the same local-improvement heuristic.
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sophisticated search techniques (such as branch-and-bound) and careful algorithmic en-
gineering, our approximation algorithms can be made practical after all. The empirical
study of these algorithms is an interesting topic for future research.

The technique that we have used to obtain the improved approximation algorithms in
this paper has been used earlier on another interesting problem in computational biology
called NONOVERLAPPING LOCAL ALIGNMENT [3,7,8]. This problem is essentially the
MAXIMUM WEIGHT INDEPENDENT SET problem for proper 2-union graphs as defined
by Bar-Yehuda et al. [4], and is also related to the weighted version of the {�, �}-
structured 2-INTERVAL PATTERN problem. The current best approximation algorithm
for the NONOVERLAPPING LOCAL ALIGNMENT problem was also obtained using the
local-improvement technique in d-claw-free graphs [7]; it has an approximation ratio of
2.5 + ε and a very high time complexity. Berman et al. [8] was able to design a simple
O(n log n) time 3 approximation for this problem using the local-ratio technique.

The 2-INTERVAL PATTERN problem is the MAXIMUM INDEPENDENT SET problem
in 2-interval graphs. A straight-forward extension, the WEIGHTED 2-INTERVAL PAT-
TERN problem, is the MAXIMUM WEIGHT INDEPENDENT SET problem in 2-interval
graphs. This extended problem has been studied by Bar-Yehuda et al. [4] in the general
framework of t-interval graphs and, very recently, by Crochemore et al. [13]. As we
noted earlier, q consecutive stacking loops formed by q + 1 stacking base pairs can be
represented by a balanced 2-interval of interval length q + 1. The connection between
balanced 2-intervals and stacking base pairs suggests the following natural variant of
the WEIGHTED 2-INTERVAL PATTERN problem:

Definition 1. Given a set of balanced 2-intervals with weight equal to the interval
length, the LENGTH-WEIGHTED BALANCED 2-INTERVAL PATTERN problem is to find
a maximum weight independent set in the corresponding 2-interval graph.

The LENGTH-WEIGHTED BALANCED 2-INTERVAL PATTERN problem contains the
unitary case of the 2-INTERVAL PATTERN problem, so it is also APX-hard [4].
Bar-Yehuda et al.’s 2t approximation for MAXIMUM WEIGHT INDEPENDENT SETin
t-interval graphs [4] implies a polynomial time 4 approximation for WEIGHTED 2-
INTERVAL PATTERN. For WEIGHTED 2-INTERVAL PATTERN on input of balanced
2-intervals, Crochemore et al. [13] designed a simpler and more efficient 4 approx-
imation using the local-ratio technique. Since LENGTH-WEIGHTED BALANCED 2-
INTERVAL PATTERN has a very special weight function, can we design a polynomial
time algorithm for it with an approximation ratio less than 4?
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Abstract. For feature selection in machine learning, set covering (SC)
is most suited, for it selects support features for data under analysis
based on the individual and the collective roles of the candidate features.
However, the SC-based feature selection requires the complete pair-wise
comparisons of the members of the different classes in a dataset, and this
renders the meritorious SC principle impracticable for selecting support
features from a large number of data.

Introducing the notion of implicit SC-based feature selection, this pa-
per presents a feature selection procedure that is equivalent to the stan-
dard SC-based feature selection procedure in supervised learning but
with the memory requirement that is multiple orders of magnitude less
than the counterpart. With experiments on six large machine learning
datasets, we demonstrate the usefulness of the proposed implicit SC-
based feature selection scheme in large-scale supervised data analysis.

Keywords: feature selection, combinatorial optimization, supervised
learning, large datasets.

1 Introduction

The classification of two types of data is a fundamental problem in machine
learning and data mining and bears close resemblance to real-life problems (e.g.,
[1,2,3,4,5,6,7,8]). Furthermore, multicategory classification can be seen as suc-
cessive binary classification (e.g., [9,10,11]). For convenience in presentation,
therefore, we refer to the general classification of data as binary classification
and denote the two types of data as ‘positive’ (+) and ‘negative’ (−) data in
this paper.

Supervised learning to binary classification is aimed at discovering a classifica-
tion theory on past (training) data in order to classify new (testing) observations
in a manner consistent with the past classifications. In view that no decision rule
is obtained in supervised learning without the process of ‘learning (training)’ and
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that the nature of classification of data in general is difficult (e.g., [12,13,14]),
the degree of difficulties associated with analyzing a set of data is more or less
determined by the difficulties associated with solving the corresponding training
problem, more specifically, the number of training observations in the dataset
and the number of features describing them.

One problem that has proved most useful for identifying a minimal set of
variables that collectively can explain the difference between the observations in
one class from the other and vice versa is set covering (SC). SC is a well-known
NP−complete problem [15]. However, owing to having an array of practical
applications, SC has attracted a number of efficient (meta-)heuristic procedures
to be developed in the literature (e.g., [16,17,18,19,20,21]), and this has led
the SC-based feature selection to be adopted as a standard feature selection
procedure in supervised learning, for example, in the logical analysis of data
(LAD) (e.g., [22,23]) and for probe selection in genomics (e.g., [4,24,25]).

Let us briefly review the standard SC-based feature selection scheme in super-
vised learning. Let S• denote the index set of m• observations of type •, where
• ∈ {+, −}. Without loss of generality [22] and for ease of presentation and
understanding, consider binary observations pi, i ∈ S•, • ∈ {+, −}. Let N =
{1, . . . , n}. Let aj , j ∈ N , denote the j−th binary attribute and let pij denote
the value of the j−th attribute in observation pi, i ∈ S•. Furthermore, let

a
(i,j)
k =

{
1, if pik �= pjk,

0, otherwise,
(1)

for each pair of pi and pj , where i ∈ S+ and j ∈ S−. It is now seen that 1’s in a
cover (a feasible solution) x for the SC instance below identifies a set of support
features that distinguishes the two types of data under analysis (e.g., [22,23,24])

min
∑

k∈N

ckxk (2)

s.t.
∑

k∈N

a
(i,j)
k xk ≥ 1, i ∈ S+, j ∈ S− (3)

xk ∈ {0, 1}, k ∈ N, (4)

where usually ck = 1 for all k ∈ N .
This SC-based feature selection is advantageous in at least two regards. First,

the SC-based feature selection examines the collective as well as the individual
roles of the candidate features in selecting support features. Second, as mentioned
earlier, a number of efficient (meta-)heuristic procedures exists for efficient so-
lution of SC.

Let us recall the most popular, textbook heuristic for SC (e.g., [26,27]). Denote
by M the Cartesian product of S+ and S−, that is, M := S+ × S−, and Ij the
index set of rows in M that the column j can cover. Given a partial cover x that
does not satisfy all of the cover inequalities in (3), denote by Mu the index set
of those rows of M in (3) that are not covered by the partial cover at hand. The



A Heuristic Method for Selecting Support Features from Large Datasets 413

textbook heuristic builds a cover for SC by repeatedly selecting one variable at
a time by a greedy rule

j ← argmin
{

k ∈ N, xk = 0, Ik ∩ Mu �= ∅ :
ck

|Ik ∩ Mu|

}

until all cover inequalities are covered. For convenience in presentation, we refer
to the feature selection via the explicit formulation of the SC instance on the data
at hand via (1)-(4) and its solution via the textbook heuristic as standard fs in
this paper. We note that standard fs is the standard procedure in supervised
learning, featured, for example, in the implementations of LAD of [22,23] for
support feature selection and in the algorithm of [4] for oligonucleotide probe
selection. [24] also uses the same explicit SC formulation-based approach for
selecting short DNA probes but uses the SC heuristic from [17] for solving the
SC instances.

Note from (1)-(4) that the SC-based feature selection requires the complete
pairwise differencing between each pair of + and − observations of the dataset
under analysis. This entails solving an SC instance with m+m− cover inequalities
in n variables and renders feature selection impossible if the membership of the
dataset is large. For example, consider the adult dataset available from the UC
Irvine Repository of Machine Learning Databases [28]. Counting the observations
without any missing attribute values, this dataset has 45,222 observations with
about 24.78% of the data belonging to one class with income > $50K and the
remaining to the other class with income ≤ $50K. Now, formulating the SC
feature selection instance on the 30,162 training data of the dataset, we obtain an
SC problem with about 1.7×108 cover inequalities and 1×104 binary variables.
In order to solve this SC by the textbook heuristic, we need two double precision
integer arrays, one for storing the information about the nonzero elements and
the other for recording the row or column starts. Suppose now that about 30% of
the elements in the cover coefficient matrix are nonzero (see Table 2 in Section 4
for the rationale). Then, noting that a double precision integer array requires 4
bytes of main memory per element, we obtain that the first integer array alone
requires about 2.0 × 1012 bytes of main memory.

In this paper, we introduce the notion of implicit SC-based feature selec-
tion and present a memory-efficient feature selection procedure that is equiv-
alent to standard fs. Specifically, assuming that m+ ≤ m−, without loss of
generality, standard fs requires O (m+m−n) of memory to store the corre-
sponding SC feature selection instance but the proposed procedure requires
O (max{m−n, m+m−}) of main memory, which is multiple orders of magnitude
less than that required by the standard procedure. The proposed feature selec-
tion scheme is SC-based, hence preserves the aforementioned merit of SC-based
feature selection in supervised learning. Furthermore, owing to the efficient use
of memory, the proposed procedure allows much larger datasets to be analyzed
by supervised learning methodologies.

Briefly summarizing the organization of this paper, we develop in Section 2
an implicit SC-based feature selection procedure that is equivalent to standard
fs. For reasons of space and readability, we omit proofs for a few mathematical
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results in this section. Next, we illustrate the steps of the proposed feature se-
lection procedure in Section 3 and demonstrate its efficiency in comparison with
the standard SC-based feature selection scheme in Section 4. In Section 5, we
test the proposed scheme in feature selection experiments with six large machine
learning datasets from [28,29]. These datasets are of the size that do not per-
mit their support features to be selected by the standard SC-based scheme, and
experimental results in this section illustrate the usefulness of the implicit SC-
based feature selection scheme in large-scale data analysis. Finally, we conclude
the paper with a summary in Section 6.

Before proceeding, we note that any other primal SC heuristic procedure from
the literature (e.g., [20,21]) can replace the role of the textbook heuristic in the
proposed feature selection procedure that we develop in the following section:
the primal-dual SC heuristics (e.g., [16,17,18]) are not suited for analyzing large
datasets because of their use of an excessive amount of additional memory for
storing the dual information. As it will become apparent by the end of Section 2,
the proposed procedure and standard fs are equivalent as long as the same SC
heuristic procedure is used in them. Our use of the textbook SC heuristic in
this paper simply owes to its popular usage for feature selection in the literature
(e.g., [22,23,30]) and ease of implementation.

2 Implicit SC-Based Feature Selection

Consider a set of binary (or binarized) data, described by n 0-1 binary/Boolean
variables. For j ∈ N = {1, . . . , n}, let lj be the literal associated with attribute
aj that instructs to take or negate the value of the attribute in all observations
pi in S+ ∪ S− via lj = aj or lj = aj , respectively. A term t is a conjunction of
literals. Let Nt ⊆ N denote the index set of the literals included in a term t,
that is, t :=

∧

j∈Nt

lj. For a term t, let

C•(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

i ∈ S• : t(pi) =
∏

lj=aj ,
j∈Nt

pij

∏

lj=aj ,
j∈Nt

pij = 1

⎫
⎪⎪⎬

⎪⎪⎭

for • ∈ {+, −}. As before, let Ij denote the index set of rows in (3) that setting
xj = 1 for j ∈ N and xk = 0 for all k ∈ N \ {j} satisfies.

Proposition 1. For j ∈ N , Ij =
(
C+(aj) × C−(aj)

)
∪

(
C+(aj) × C−(aj)

)
.

Proposition 2. For t=∧j∈Nt lj, where Nt ⊆ N and Nt �= ∅, C•(t)=
⋂

j∈Nt

C•(lj)

for • ∈ {+, −}.

Let t :=
∧

j∈Nt
lj in the following.
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Lemma 1. For t = ∧j∈Nt lj, where Nt ⊆ N ,

Mu(t) =
(
C+(t) × C−(t)

)
∪

(
C+(t) × C−(t)

)

gives the index set of the rows in (3) that are not satisfied by the solution xj = 1
for j ∈ Nt and xk = 0 for k ∈ N \ Nt.

Corollary 1. For some Nt ⊆ N , Nt �= ∅, let T be the collection of all terms of
the form t = ∧j∈Nt lj. Then,

Mu =
⋃

t∈T

Mu(t)

gives the index set of the rows in (3) that are not satisfied by the solution xj = 1
for j ∈ Nt and xk = 0 for k ∈ N \ Nt.

For some Nt ⊆ N and Nt �= ∅, let

T =
{
t = ∧j∈Nt lj : C+(t) �= ∅, C−(t) �= ∅

}
. (5)

If T �= ∅, then for each t ∈ T , let

M ′
u(t) = C+(t) × C−(t).

Theorem 1. For some Nt ⊆ N , Nt �= ∅, let T be defined via (5). If T = ∅, then
the solution obtained by setting xj = 1 for j ∈ Nt and xk = 0 for k ∈ N \ Nt

satisfies the SC constraints in (3). If T �= ∅, then

Mu =
⋃

t∈T

M ′
u(t) =

⋃

t∈T

C+(t) × C−(t)

gives the index set of the rows in (3) that are not satisfied by the solution xj = 1
for j ∈ Nt and xk = 0 for k ∈ N \ Nt.

Proof. If T = ∅, consider any term of the form t = ∧j∈Nt lj. Then, T = ∅ implies
that at least one of C•(t) = ∅ and at least one of C•(t′) = ∅ for • ∈ {+, −}.
This trivially yields the result.

Now, if T �= ∅, we have

Mu =
⋃

t∈T

Mu(t) =
⋃

t∈T

M ′
u(t) ∪ M ′

u(t).

Here, M ′
u(t) = C+(t) × C−(t) may or may not be empty. If empty, the result is

immediate. If not empty, then t is also a member of T , hence M ′
u(t) needs not

be considered here with t. This completes the proof.

Theorem 2. For some Nt ⊆ N and Nt �= ∅, let T be defined via (5). If T �= ∅,
then for j ∈ N \ Nt,

Ij ∩ Mu =
⋃

t∈T

(
C+(t ∧ aj) × C−(t ∧ aj)

)
∪

(
C+(t ∧ aj) × C−(t ∧ aj)

)
(6)

gives the index set of the rows in (3) that are not satisfied by the solution xk = 1
for k ∈ Nt and xl = 0 for l ∈ N \ Nt that setting xj = 1 additionally covers.
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Proof. First, note that, barring infeasibility of the feature selection problem,
T �= ∅ implies that N \ Nt �= ∅. Next, note for t ∈ T and j ∈ N \ Nt that

Ij ∩ M ′
u(t) =

{(
C+(aj) × C−(aj)

)
∪

(
C+(aj) × C−(aj)

)}
∩

(
C+(t) × C−(t)

)

=
{(

C+(aj) × C−(aj)
)

∩
(
C+(t) × C−(t)

)}
∪

{(
C+(aj) × C−(aj)

)
∩

(
C+(t) × C−(t)

)}

=
{(

C+(aj) ∩ C+(t)
)

×
(
C−(aj) ∩ C−(t)

)}
∪

{(
C+(aj) ∩ C+(t)

)
×

(
C−(aj) ∩ C−(t)

)}

=
(
C+(aj ∧ t) × C−(aj ∧ t)

)
∪

(
C+(aj ∧ t) × C−(aj ∧ t)

)

=
(
C+(t ∧ aj) × C−(t ∧ aj)

)
∪

(
C+(t ∧ aj) × C−(t ∧ aj)

)
.

Finally, Ij ∩Mu = Ij ∩
⋃

t∈T M ′
u(t) =

⋃
t∈T (Ij ∩ M ′

u(t)) gives the desired result.

Corollary 2. For some Nt ⊆ N and Nt �= ∅, let T be defined via (5). If T �= ∅,
then for j ∈ N \ Nt,

|Ij ∩ Mu| =
∑

t∈T

|C+(t ∧ aj)| × |C−(t ∧ aj)| + |C+(t ∧ aj)| × |C−(t ∧ aj)|, (7)

gives the number of the rows in (3) that are not satisfied by the solution xk = 1
for k ∈ Nt and xl = 0 for l ∈ N \ Nt that setting xj = 1 additionally covers.

We use the results above to devise a memory-efficient heuristic procedure that
we propose for selecting support features from large datasets.

procedure proposed fs
input: binary and contradiction free data pi, i ∈ S+ ∪ S−

output: Nt, an index set of support features
begin

obtain C•(aj) for • ∈ {+, −} for j ∈ N .
set Nt = {j ∈ N : Ij is maximal} and define T via (5).
set Nu = N \ {T } and k = 1.
while T �= ∅ do (iteration k)

obtain C•(t) for • ∈ {+, −} for each t ∈ T

set l ← argmin
{
j ∈ Nu : cj

|Ij∩Mu|
}

, where |Ij ∩ Mu| is calculated for
j ∈ Nu via (7).

set Nt ← Nt ∪ {l} and define T via (5).
if T �= ∅ then set Nu ← Nu \ {l} and set k ← k + 1.

end while
end

The following states that proposed fs and standard fs are equivalent in
terms of the cover they build for the SC feature selection instance at hand.

Theorem 3. For any SC feature selection instance defined by (1)-(4), proposed
fs selects the same set of support features as standard fs.
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We close this section with the comparison of the memory requirements by
standard fs and proposed fs. As we are concerned with the analysis of large
datasets, we assume that at least one of m+ and m− is a large number and that
m+ ≤ m−, without loss of generality. Assume further that m+m− > n, for oth-
erwise, the dataset may be too large to be analyzed, especially when m+ and m−

are both large numbers: in this case, we may first partition the column set into
K smaller subsets of ni columns, where ni < m+m− for i = 1, . . . , K and then
successively solve smaller SC feature selection instances and aggregate support
features from (the) subproblems and remove the redundant ones to compose a
set of support features for the dataset.

Note that the nonzero elements of the constraint matrix of an SC instance
is 1. Hence, standard fs requires one double precision integer column array
of length in the number of nonzero elements for storing the row indices of the
nonzero elements. This yields that the amount of memory required by standard
fs for support feature selection is O(m+m−n).

Now, proposed fs requires an integer array for C•(aj) for each j ∈ Nu for
• ∈ {+, −} and a different array for C•(t) for each t ∈ T for • ∈ {+, −}. In
the worst case, C−(aj) can have m− elements in it, T can include up to 1

2m+

elements, and C−(t) can be of length 1
2m− for some t ∈ T . These yield that

the memory requirement by proposed fs for storing an SC feature instance is
O(max{m−n, m+m−}), which is multiple orders of magnitude down from that
required by standard fs.

3 Illustrative Example

For data in Table 1, we apply standard fs and proposed fs and demonstrate
the equivalency between standard fs and proposed fs, as stated in Theorem 3,
and also the steps of proposed fs.

When formulated on the data in Table 1, the constraint matrix of the feature
selection problem becomes:

For this problem, standard fs identifies Nt = {1, 2, 3, 4, 5} with the individ-
ual support features selected in order 5-1-3-2-4 (with the use of the lowest index
first rule for breaking ties).

When applied, proposed fs also selects {a1, a2, a3, a4, a5} as support fea-
tures. The following details the steps of proposed fs. For notational conve-
nience, we use αj for |Ij ∩ Mu| for j ∈ Nu in this example.

Initialization. We first obtain C•(aj), •{+, −}, for j ∈ N :

C+(a1) = {1, 3, 4}, C−(a1) = {1, 4, 5}
C+(a2) = {1, 2}, C−(a2) = {5}
C+(a3) = {3}, C−(a3) = {2, 5}
C+(a4) = {2, 4}, C−(a4) = {3}
C+(a5) = {1, 2, 3, 5}, C−(a5) = {1, 2}
C+(a6) = {3, 5}, C−(a6) = {2, 3}
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Table 1. Example dataset 1

a1 a2 a3 a4 a5 a6

i pi1 pi2 pi3 pi4 pi5 pi6

S+

1 1 1 0 0 1 0
2 0 1 0 1 1 0
3 1 0 1 0 1 1
4 1 0 0 1 0 0
5 0 0 0 0 1 1

S−

1 1 0 0 0 1 0
2 0 0 1 0 1 1
3 0 0 0 1 0 1
4 1 0 0 0 0 0
5 1 1 1 0 0 0

A = {a
(k,l)
j , k ∈ S+, l ∈ S−, j ∈ N} =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0
1 1 1 0 0 1
1 1 0 1 1 1
0 1 0 0 1 0
0 0 1 0 1 0
1 1 0 1 0 0
0 1 1 1 0 1
0 1 0 0 1 1
1 1 0 1 1 0
1 0 1 1 1 0
0 0 1 0 0 1
1 0 0 0 0 0
1 0 1 1 1 0
0 0 1 0 1 1
0 1 0 0 1 1
0 0 0 1 1 0
1 0 1 1 1 1
1 0 0 0 0 1
0 0 0 1 0 0
0 1 1 1 0 0
1 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 1 0
1 0 0 0 1 1
1 1 1 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Next, we calculate |Ij | = |C+(aj)|×|C−(aj)|+ |C+(aj)|×|C−(aj)| for j ∈ N :

|I1| = 3 × 2 (= m− − |C−(a1)|) + 2 (= m+ − |C+(a1)|) × 3 = 12
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|I2| = 2 × 4 + 3 × 1 = 11
|I3| = 1 × 3 + 4 × 2 = 11
|I4| = 2 × 4 + 3 × 1 = 11
|I5| = 4 × 3 + 1 × 2 = 14
|I6| = 2 × 3 + 3 × 2 = 12

With |I5| = 14, Nt ← {5} and T ← {t1 = a5, t2 = a5} via (5). Set Nu ←
{1, 2, 3, 4, 6} and k = 1.

Iteration 1. For t ∈ T , we have C+(t1) = {1, 2, 3, 5}, C−(t1) = {1, 2}, C+(t2) =
{4} and C−(t2) = {3, 4, 5}. In order to calculate α1(= I1 ∩ Mu), we first obtain
|C+(t1 ∧ a1)| = 2, |C−(t1 ∧ a1)| = 1, |C+(t1 ∧ a1)| = 2 and |C−(t1 ∧ a1)| = 1
for t1 and |C+(t2 ∧ a1)| = 1, |C−(t2 ∧ a1)| = 1 and |C−(t2 ∧ a1)| = 0 for t2. As
|C−(t2 ∧a1)| = 0, we need not compute |C−(t2 ∧a1)| here. Using these in (7), we
next obtain α1 = 5. Likewise, we obtain α2 = 5, α3 = 5, α4 = 4 and α6 = 5. By
the lowest index first rule for breaking ties, Nt ← {1, 5} and Nu ← {2, 3, 4, 6}.
T updates to {a1a5, a1a5, a1a5}.

Iteration 2. We have C+(t1) = {1, 3}, C−(t1) = {1}, C+(t2) = {2, 5}, C−(t2) =
{2}, C+(t3) = {4} and C−(t3) = {4, 5} and obtain α2 = 3, α3 = 4, α4 = 3 and
α6 = 2. Hence, Nt ← {1, 3, 5}, Nu ← {2, 4, 6} and T ← {a1a3a5, a1a3a5}.

Iteration 3. We have C+(t1) = {1}, C−(t1) = {1}, C+(t2) = {4} and C−(t2) =
{4} and calculate α2 = 1, α4 = 1 and α6 = 0. This updates Nt to {1, 2, 3, 5} and
Nu to ← {4, 6}. T ← {a1a2a3a5}.

Iteration 4. Similarly as above, we obtain Nt ← {1, 2, 3, 4, 5} and Nu ← {6}.
As T ← ∅, proposed fs terminates with selecting {a1, a2, a3, a4, a5} as a set of
support features for this dataset.

4 Comparative Experiments with Adult Data

The adult dataset [28] is a two-class (income over $50K or below) dataset with
45,220 observations that are defined in terms of 14 non-binary attributes. To
demonstrate the difficulty associated with selecting support features via the
standard SC-based approach, we used the first mt observations of the dataset,
with the value of mt varied from 1,000 to 8,000 in the increment of 1,000, and
calculated the size of the corresponding SC feature selection instance in the first
six columns of Table 2. Specifically, going from left to right, we list in Table 2
the number of rows (m), the number of columns (n), the number of nonzero
elements (ne) and the density of the nonzero elements in the SC constraint
matrix and then provide the amount of space required by standard fs to store
the nonzero elements in a single double precision integer array of length ne in
order to select support features on the mt adult data. In the last two columns of
Table 2, we summarize the computational times required by standard fs and
proposed fs in selecting support features on the mt adult data. We performed



420 H.S. Ryoo and I.-Y. Jang

Table 2. Comparison of feature selection results on adult data by standard fs and
proposed fs

standard fs proposed fs

m§
t

m = m+m− n ne† density‡ mem. req.∗ feature selection feature selection
(in 106) (in 103) (in 108) (in %) (in Gb) timea timea

1,000 0.18 0.58 0.30 28.3 0.12 0.9 0.1
2,000 0.76 1.00 2.28 29.7 0.91 8.24 0.7
3,000 1.73 1.38 7.26 30.4 2.90 26.8 2.2
4,000 3.01 1.73 16.01 30.7 6.4 462.4 5.5
5,000 4.69 2.07 30.30 31.3 12.1 1,021.3 10.6
6,000 6.75 2.41 51.42 31.6 20.6 - 18.3
7,000 9.14 2.74 80.02 31.9 32.0 - 27.6
8,000 11.87 3.10 117.73 31.9 47.1 - 37.6
§: The number of training data: the first mt observations of adult dataset.
†: The number of nonzero a

(i,j)
k ’s (1’s) in (3).

‡: Calculated by ne
mn

× 100%.
∗: Calculated via 4 bytes per double precision integer array element.
a: Total time required for feature selection in CPU seconds.
-: Did not solve due to large memory requirement by standard fs.

these experiments on an Intel 2.66GHz Linux PC with 512Mb of main memory
and 80Gb of hardisk space and with using the Intel Fortran 90 compiler.

Recalling that standard fs and proposed fs select the same set of support
features on any given set of data, the comparative feature selection results in
Table 2 illustrate the efficiency of the implicit SC-based feature selection well.

5 Experiments on Large Datasets

For testing the proposed feature selection scheme, we obtained six larger size ma-
chine learning datasets from [28,29]. In Table 3, we summarize the information
on the datasets analyzed and the feature selection results on them by proposed
fs. More specifically, from left to right, we provide the number of classes, the
number of attributes before data binarization, and the number of training ob-
servations in each of the six datasets analyzed. Then, we provide the number
of binary features before feature selection, the number of support features se-
lected and the total time spent for feature selection by proposed fs. For four
datasets with more than two types of data, we selected support features in the
k − 1 successive classification setup of ‘one type against the remaining,’ where
k is the numbers of classes in those datasets. Again, we used the Intel Fortran
90 compiler and an Intel 2.66GHz Linux PC with 512Mb of main memory and
80Gb of hardisk space for these experiments.

Noting the size of the training datasets and in conjunction with the illustration
made in the previous section, the results summarized in Table 3 clearly illustrate
the usefulness of the proposed SC-based feature selection scheme in large-scale
supervised data analysis without the need for further discussions.
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Table 3. Feature selection results on larger datasets by proposed fs

Database
Number of Number of Features Feature Selection

classes attributes training data total1 support2 time (CPU sec.)

Adult 2 14 30,161 9,654 139 1,692.3
Ann-thyroid 3 21 3,772 580 12 0.4
Face Detection 2 361 6,977 87,552 17 8,184.7
Forest Covertype 7 54 11,340 5,676 43 264.3
Letter Recognition 26 16 16,000 168 19 29.9
Statlog Satellite Image 6 36 4,435 1,637 23 10.6
1: The number of binary features in the dataset.
2: The number of support features selected.

6 Conclusion

Feature selection in machine learning is a combinatorics and optimization na-
tured problem that holds a key to successful analysis of large datasets. Although
SC is most suited for feature selection, SC-based feature selection requires the
complete pair-wise comparisons among the members of the different classes in
a dataset under analysis, and, as the result, the size of an SC instance grows
rapidly in the number of observations in a dataset. This in turn makes the mer-
itorious SC principle impractical to use for feature selection on a large number
of data.

Introducing the notion of implicit SC-based feature selection, we presented in
this paper a memory-efficient SC procedure that is equivalent to the standard
SC-based feature selection procedure in supervised learning. With the efficient
use of memory, the proposed feature selection procedure allows larger datasets
to be successfully analyzed by a supervised learning methodology. With experi-
ments on six large machine learning dataset, we illustrated the usefulness of the
proposed implicit SC-based feature selection scheme in large-scale data analysis.
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1. Apté, C., Weiss, S., Grout, G.: Predicting defects in disk drive manufacturing: A
case study in high-dimensional classification. In: Proceedings of the 9th Conference
on Artificial Intelligence for Applications, Orlando, Florida (1993) 212–218

2. Bhandari, I., Colet, E., Parker, J., Pines, Z., Pratap, R., Ramanujam, K.: Advanced
scout: Data mining and knowledge discovery in nba. Data Mining and Knowledge
Discovery 1 (1997) 121–125

3. Carter, C., Catlett, S.: Assessing credit card applications using machine learning.
IEEE Expert (1987) 71–79

4. Kim, K., Ryoo, H.: A lad-based method for selecting short oligo probes for genotyp-
ing applications. OR Spectrum: Special Issue on OR and Biomedical Informatics
(2006) accepted for publication.

5. Osuna, E., Freund, R., Girosi, F.: Training support vector machines: an appli-
cation to face detection. In: IEEE Conference on Computer Vision and Pattern
Recognition, Puerto Rico (1997) 130–136



422 H.S. Ryoo and I.-Y. Jang

6. Rahmann, S.: Fast large scale oligonucleotide selection using the longest common
factor approach. Journal of Bioinformatics and Computational Biology 1(2) (2003)
343–361

7. Wang, X., Seed, B.: Selection of oligonucleotide probes for protein coding se-
quences. Bioinformatics 19(7) (2003) 796–802

8. Wolberg, W., Mangasarian, O.: Multisurface method of pattern separation for
medical diagnosis applied to breast cytology. Proceedings of the National Academy
of Sciences 87 (1990) 9193–9196

9. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20 (1995)
273–297

10. Ullman, J.: Pattern Recognition Techniques. Crane, London (1973)

11. Vapnik, V.: Statistical Learning Theory. Wiley-Interscience (1998)

12. Bennett, K., Mangasarian, O.: Robust linear programming discrimination of two
linearly inseparable sets. Optimization Methods and Software 1 (1992) 23–34

13. Falk, J., Lopez-Cardona, E.: The surgical separation of sets. Journal of Global
Optimization 11 (1997) 433–462

14. Megiddo, N.: On the complexity of polyhedral separability. Discrete and Compu-
tational Geometry 3 (1988) 325–337

15. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP−Completeness. Freeman, New York (1979)

16. Balas, E., Carrera, M.: A dynamic subgradient-based branch-and-bound procedure
for set covering problem. Operation Research 44(6) (1996) 875–890

17. Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering
problem. Operations Research 47(5) (1999) 730–743

18. Ceria, S., Nobili, P., Sassano, A.: A lagrangian-based heuristic for large-scale set
covering problems. Mathematical Programming 81(2) (1998) 215–228

19. Fisher, M., Kedia, P.: Optimal solution of set covering/partitioning problems using
dual heuristics. Management Science 36 (1990) 674–688

20. Vasko, F., Wilson, G.: An efficient heuristic for large set covering problem. Naval
Research Logistics Quarterly 31 (1984) 163–171

21. Vasko, F., Wilson, G.: Hybrid heuristics for minimum cardinality set covering
problems. Naval Research Logistics Quarterly 33 (1986) 241–249

22. Boros, E., Hammer, P., Ibaraki, T., Kogan, A., Mayoraz, E., Muchnik, I.: An
implementation of logical analysis of data. IEEE Transactions on Knowledge and
Data Engineering 12 (2000) 292–306

23. Ryoo, H., Jang, I.Y.: Milp approach to pattern generation in logical analysis of
data. Machine Learning (2005) submitted.

24. Borneman, J., Chrobak, M., Vedova, G., Figueroa, A., Jiang, T.: Probe selection
algorithms with applications in the analysis of microbial communities. Bioinfor-
matics 17(Suppl. 1) (2001) S39–S48

25. Klau, G., Rahmann, S., Schliep, A., Vingron, M., Reinert, K.: Optimal robust non-
unique probe selection using integer linear programming. Bioinformatics 20(Suppl.
1) (2004) i186–i193

26. Chaval, V.: A greedy heuristic for the set covering problem. Mathematics of
Operations Research 4(3) (1979) 233–235

27. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-
Interscience Series I Discrete Mathematics and Optimization. Wiley, New York
(1988)



A Heuristic Method for Selecting Support Features from Large Datasets 423

28. Murphy, P., Aha, D.: Uci repository of machine learning databases: Readable data
repository. Department of Computer Science, University of California at Irvine,
CA (1994) Available from World Wide Web: http://www.ics.uci.edu/˜mlearn/
MLRepository.html.

29. Heisele, B., Poggio, T., Pontil, M.: Face detection in still grey images. Technical
report, MIT Artificial Intelligence Laboratory and Center for Biological and Com-
putational Learning, Massachusetts (2000) A.I. Memo No. 1687, C.B.C.L. Paper
No. 187, Data available from World Wide Web: http://cbcl.mit.edu/cbcl/software-
datasets.

30. Hammer, P., Bonates, T.: Logical analysis of data: From combinatorial optimiza-
tion to medical applications. RUTCOR Research Report 10-2005 (2005)

http://www.ics.uci.edu/~{ }mlearn/MLRepository.html.
http://www.ics.uci.edu/~{ }mlearn/MLRepository.html.


Game and Market Equilibria: Computation,

Approximation, and Smoothed Analysis

Shang-Hua Teng

Department of Computer Science
Boston University, and

Akamai Technologies Inc.

I will present some recent advances in algorithmic game theory especially about
Nash equilibria. As you may have already known, the notion of Nash equilibria
has captured the imagination of much of the computer science theory community,
both for its many applications in the growing domain of online interactions and
for its deep and fundamental mathematical structures. As the complexity and
scale of typical Internet applications increase, the problem of efficiently analyzing
their game-theoretic properties becomes more pointed.

In particular, I will cover the recent results in settling several open questions
about Nash equilibria. After a quick review the result of Chen and Deng that

Bimatrix, the problem of finding a Nash equilibrium in a two-person
game, is a complete problem in the complexity class PPAD (Polyno-
mial Parity Argument, Directed version) introduced by Papadimitriou
in 1991,

I will focus on the approximation and smoothed complexity of equilibrium com-
putation and prove the following two theorems:

• Bimatrix does not have a fully polynomial-time approximation scheme,
unless every problem in PPAD is solvable in polynomial time.

• The smoothed complexity of the classic Lemke-Howson algorithm, and in
fact, of any algorithm for Bimatrix is not polynomial, unless every problem
in PPAD is solvable in randomized polynomial time.

Our results demonstrate that, even in this simplest form of non-cooperative
games, equilibrium computation and approximation are polynomial-time equiv-
alent to fixed-point computation. If time permits, I will also cover the extensions
of these results to other equilibrium problems such as in trading and market
economies.

Joint work with Xi Chen (Tsinghua University), Xiaotie Deng (The City Uni-
versity of Hong Kong). Also with Li-Sha Huang (Tsinghua University) and Paul
Valiant (MIT).
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Abstract. An exploding market has emerged during the last few years
on the internet, the market of sponsored search slots. Advertisers are
able to buy space on the webpages produced by popular search engines
and place advertisements to promote their products alongside the reg-
ular algorithmic search results. The allocation of these advertising slots
and their pricing is done via auctions. Since the introduction of this
concept in 1998, sponsored search has evolved into a major source of
revenue for internet giants such as Google, Yahoo!, MSN and others. Its
success can be attributed partly to its effectiveness as a form of highly
targeted advertising, and partly to the appealing framework that allows
even small-scale advertisers to use it easily and effectively while only
paying when their ad is clicked upon.

Numerous interesting mathematical, algorithmic and game-theoretic
questions arise when one starts to think about these auctions. How should
the auctions be designed so as to maximize search engine profit? What
bidding strategies should the advertisers use? What are the dynamics and
convergence properties of these systems? These questions are of extreme
importance to the industry as even a minor change in the framework or
in the way the advertisers bid could results in millions of dollars in profit
or loss for both the advertisers and the search providers.

In this talk, we survey recent research on these kinds of questions and
discuss open problems in the area.
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Sourcing: How We Conducted $25 Billion of
Generalized Combinatorial Auctions

Tuomas Sandholm
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Abstract. Sourcing professionals buy several trillion dollars worth of
goods and services yearly. We introduced a new paradigm called expres-
sive commerce and applied it to sourcing. It combines the advantages of
highly expressive human negotiation with the advantages of electronic
reverse auctions. The idea is that supply and demand are expressed in
drastically greater detail than in traditional electronic auctions, and are
algorithmically cleared. This creates a Pareto efficiency improvement in
the allocation (a win-win between the buyer and the sellers) but the
market clearing problem is a highly complex combinatorial optimization
problem. We developed the world’s fastest tree search algorithms for
solving it. We have hosted $25 billion of sourcing using the technology,
and created $3.2 billion of hard-dollar savings plus numerous harder-to-
quantify benefits. The suppliers also benefited by being able to express
production efficiencies and creativity, and through exposure problem re-
moval. Supply networks were redesigned, with quantitative understand-
ing of the tradeoffs, and implemented in weeks instead of months.
URL for the paper:
http://www.cs.cmu.edu/ sandholm/Expressive%20commerce.aimag.pdf
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